1IOS DeCal : Lecture ¢

Objective C

April 18, 2017

Announcements - 4/18

Make good progress on custom apps!

Remember! Jacobs Design Showcase is on May 4th if
you want to show off what you’ve made.

Jacobs Design Showcase
Thursday, May 4th from 9:30 - 11:30am
If you are interested in presenting your final
project, please let us know! (interest form on
Piazza)

Jacobs Design Showcase

T }t\
= ¢ A
It] -
: ()
e d
e
k

A 4
‘\ l q
A 4 ks

. ; L 5 3
4 // ,

A

Ay

i::,)'
Thursday, May 4th, 2017 from 9:30 - 11:30am

Link to past showcase information: goo.gl/yattUW

Fill out form on Piazza if you are interested in presenting

http://goo.gl/yaffUW

Overview

History and Philosophy

Syntax
Additional Stuft

History and
Philosophy

Why Bother?

* Most Companies still have thousands of lines of

egacy Objective-C code

* Cocoa and Cocoa Touch Frameworks still in
Objective-C (including ability to mix in C/C++)

* Objective-C is still just...better

Object-Oriented + C = Objective C

* Designed by Brad Cox and Tom Love at
Stepstone

» Combined Smalltalk philosophy (OO, message
passing, etc.) with C backwards compatibility

* Licensed by NeXT, later adopted by Apple

Pointers and Mem. Management

* YES, you must alloc memory tor objects!
* How much? Done for you

* YES, Objective-C has pointers

* no, you don't have to free allocated memory
e Automatic Reference Counting (ARC)

Why not Garbage Collection?

* What's wrong with Garbage Collection (GC)?
» Stores object-dependency graph at run-time
* Objects become candidates to free later

(unpredictable, slow, inefficient)
* Improve?

* Make the compiler analyze code to determine
when objects need to be released (freed) or
retained (not freed) at compile-time

GC vs ARC

» Garbage Collection (GC)?
» Stores object-dependency graph at run-time
* Objects become candidates to free later
(unpredictable, slow, inefficient)
* Automatic Reference Counting (ARC)
» Auto-generate release/retain code @ compile-
time
* Objects are freed IMMEDIATELY when not
needed

* Vulnerable to retain cycles

Retain Cycles

@class Child;
@interface Parent : NSObject {

Child *child; //instance variables implicitly __strong
5

@end
@interface Child : NSObject {

Parent xparent; //also implicitly __strong
s

@end

Bad

J
-
o

Retain Cycles

@class Child,
@interface Parent : NSObject {

Child *child; //instance variables implicitly __strong
}

@end
@interface Child : NSObject {

__weak Parent xparent; //doesn’t increase ref count
}

@end

Good

L
Cow

Syntax

Head the Implementation!

e Return of the header (.h) and main (.m) file
 Header file used to define class
* Main file is the implementation

e No more .swift

Header File - Example

#import <UIKit/UIKit.h>
@interface ViewController: UIViewController

@property (nonatomic, retain) UILabel xlabel;
—(NSString *)showString;

@end

Header File - General

#import <UIKit/UIKit.h>
@interface <ClassName>: <SuperClassName>

//all properties and methods go here

@end

The Implementation File - Example

#import “ViewController.h”
@interface ViewController()
@end
@imp lementation ViewController
—(void)viewDidLoad {
[super viewDidlLoad];
self.label = [[UILabel alloc] init];
}
—(NSString *)showString {
return @"0bj—-C >= Swift”;
}
@end

The Implementation File - General

#import “ClassName.h”
@interface <ClassName>()
@end

@imp lementation <ClassName>
//1implement methods here
@end

Properties

* @property - tag for creating instance variables

* Automatically generates getter/setter methods
* i.e. [selt setPropertyName: Steve]

* Several Attributes

Attributes

* atomic - less prone to multithreading
(concurrency) errors

* nonatomic - prone to multithreading errors

* strong - want to own the object

* weak - you don’t want control over object’s
litfetime

» readonly - doesn't create setter method

* copy - used for primitive data-types

* retain - pre-iOS 5 version of strong

* assign - pre-iOS 5 version of weak

Bracket Notation

* Methods and properties
e Can also use dot notation but not
recommended

Bracket Notation - Instantiating

UILabel UILabel alloc] 1nit

Getters and Setters

» Compiler automatically synthesizes getters ana
setters

@property (nonatomic, strong) UILabel *agelLabel;

[self agelLabell; //automatically generated
[self setAgelLabel:somelLabel]; //automatically generated

Dot Notation

* More similar to Swift
* Less confusion when using both Swift / Obj-C
* Some Obj-C programmers still preter getters/
setters
» Easier to distinguish between getter and setter
* Able to use CMD + 1
» Use when dealing with properties
» Keeps it clean and concise

Dot vs. Bracket

@property (nonatomic, strong) UILabel xagelLabel;

self.agelLabel = somelLabel; //dot notation
[self setAgelLabel:somelLabel]; //bracket with setter

Functions

e Plus (+)
e class method
e Minus (-)
* instance method

Creating Functions

—(NSString *)showString A
return @"0bj-C >= Swift”;
}

—(NSString *)showString: (NSString x)extra {
return extra;

}

—(NSString *)showString: (NSString *x)extra withString:
(NSString *)var {

return [NSString stringWithFormat:@”"%@ %@"”, extra,
var];

}

Calling Functions

[self showStringl;
[self showString:@”0bj-C"];
[self showString:@”0bj-C” withString:@”Functions”];

//general method of calling
[<Class> <Function in class>];

Strings

* There is no built-in class type String, must use
NSString
» To use NSString, must prepend every string with

@
* Printing to log is done with NSLog

Strings - Examples

//creating a string
NSStringx str = @"Hello world!"”;

//combining strings
NSString*x str = [NSString stringWithFormat:@"Hello %@",
@"World!"];

//printing to log
NSLog(@”Printing %@”, @”to log!”);

Arrays

* There is no built-in class type Array
* Use NSArray or NSMutableArray

//1immutable
NSArray xstaff = @[@"Sony”, @"Gene”, @”Shawn”, @"Allie”,
@"Lucy"’ @IiHe'Lena"’ @"Kyle"] ;

NSArray xstaffl = [NSArray arrayWithObjects:@”Sony”,
@"Gene”, @"Shawn”, @"Allie”, @"Lucy”, @"Helena”,
@”"Kyle”, nil];

//mutable
NSMutableArray *xhello = [[NSMutableArray alloc] init];

[hello addObject:@”Hello”];

Check-In

UlView

//1initWithFrame and CGRectMake
UIView xtestView = [[UIView alloc] initWithFrame:
CGRectMake (0, 0, 200, 200)];

//addSubview is crucial!
[self.view addSubview:testView]:

UlView - Another example

//getting the size of our screen
CGSize *xscreen = [UIScreen mainScreen].bounds.size;

//let’s apply this now (look at CGRectMake)
UIView *xtestView = [[UIView alloc] initWithFrame:
CGRectMake(screen.width/2-100,
screen.height/2-100, 200, 200)];
//addSubview is crucial!
[self.view addSubview:testView]:

Initializers

#import “CustomLabel.h”

@imp lementation CustomLabel
e (id) custInit A

self = [super initWithFrame:CGRect];
//Design your UILabel here
return self;

}

@end

CustomLabel x1 = [[CustomLabel alloc] custInit]:

Additional Notes

Objective-C + Swift

* Use a bridging header
* Add Obj-C Class (.m file)
» Add Bridging Header

* Click "Yes’ when asked to configure bridging

header
* Add Obj-C class header (.h file)

* Fill out Obj-C code (both .m and .h)
* Import class in Bridging Header

Using Swift with Objective-C

o Add Swift class (.swift file)

* Import Swift file as:
» #import “NameOftFile-Swift.h”

