
iOS DeCal : Lecture 2
Structure of iOS Applications:

MVC and Auto Layout

Model View Controller Design Pattern

Creating Views in Storyboard

Connecting your Views to Code

Auto Layout

Overview : Today’s Lecture

- Enroll in the Course!
- enroll through CalCentral (you will not be automatically

enrolled in the course)
- CCN and more info can found on Piazza

- Sign in on Piazza!
- No Lecture next week (still meeting for Lab on 2/16)
- Lab 1 is due TONIGHT if you did not get checked off

- Submit via Gradescope
- We will not be able to post grades for Lab 1 on

GradeScope, but will for future labs
- Attendance Google Sheet?

Announcements

http://piazza.com/berkeley/spring2017/cs198s17

Model View Controller

Software Design Patterns are reusable solutions
to common problems in software design

Main Idea: Assign objects in your application
distinct roles using well-defined patterns and
object relationships

There are many different types of patterns (not
just basic MVC)!

Overview : Software Design Patterns

Common Design Pattern in Cocoa Applications

Assigns objects in your application one of the
following distinct roles:

Model - encapsulates data and defines logic /
computations

View - what the users see and interact with

Controller - intermediary between models and views

Model View Controller (MVC)

Model

Controller

View

User Action

Update

Update

Notify

Model View Controller

Model

Controller

View

User interacts with View (eg user taps “=“ button in calculator)

Example
User taps a button

Model

Controller

View

User Action

Controller is notified that the user has made an action

Example
User taps a button

Model

Controller

View

User Action Update

Controller updates the Model to reflect the users change

Example
User taps a button

Model

Controller

View

User Action Update

Notify

Model stores info / calculates then notifies controller of result

Example
User taps a button

Notice how there is no direct connection from Model to View!

Controller

View Model

User Action

Update

Update

Notify

Issue #1 : Breaking Model / View Abstraction

Controller

View Model

User Action

Update

Update

Notify

Common
Design issues

Issue #2 : Bloated Controllers

Controller

View

User Action

Common
Design issues

Issue #2 : Bloated Controllers

Controller

View

User Action

Common
Design issues

MVC in iOS / Xcode

Model : data, logic, and computation

To Create
New > File > Swift

View (Interface Builder) : What the user sees

In Storyboard - create views from the Object Library

View (Programmatic) : what the users see

Creating views
programmatically

New > File > Cocoa Touch
Class. Then subclass an

existing type of View

Controllers in Xcode > View Controllers

Creating a Custom
View Controller

(Interface Builder)

Create a View Controller Class for your custom
View Controller

Creating View Controllers : Step 1

To create
New > File > Cocoa Touch
Class. Then subclass an
existing View Controller

Drag a View Controller from your Object Library
into your Storyboard

Creating View Controllers : Step 2

Open Main.storyboard, and navigate to the
Object Library

Drag a View Controller onto your
Storyboard

Set the View Controller’s class to the custom class
you created in Step 1 (don’t forget this step)!

Creating View Controllers : Step 3

Change the Class field (found in
the Identity Inspector) from

ViewController to your custom
View Controller’s name

Tap on your View
Controller in the

Storyboard, then open
the Identity Inspector

Creating View Controllers : Step 4

Your new View
Controller is all

set to go!

Now you can start adding
views from the Object

Library and customizing
your View.

Search for specific objects in
the Filter Search Bar

Control + Drag to connect UI elements in
Storyboard to your code

Control Drag in Interface Builder

Control Drag : Outlets

Pressing Connect generates an
Outlet (linked to your storyboard)

Control Drag : Actions
If you want your UI element to DO something when tapped,
highlighted, changed, etc. create an Action

Example: UIButton

Start by Control +
Dragging from button
your code (just as you
would with an Outlet)

Control Drag : Actions

Set the Connection type to Action and Type (it’s referring
to Sender Type) to UIButton

Other values should default to the ones shown above.

Control Drag : Actions
Pressing connect will generate a method for you in your file
that will be called every time the user taps your button.

Control Drag : Actions
Pressing connect will generate a method for you in your file
that will be called every time the user taps your button.

You can access the button itself by modifying sender

@IBAction func buttonWasPressed(_ sender: UIButton) {
// add your own code here!

}

Control Drag : Actions
Pressing done will generate a method for you in your file
that will be called every time the user taps your button.

You can access the button itself by modifying sender

@IBAction func buttonWasPressed(_ sender: UIButton) {
// add your own code here!
sender.setTitle("Button was tapped!”,for: .normal)

}

Avoid adding too much to View Controllers!
With more complicated UI’s,
you’ll end up having lots of
outlets, actions, and view
customization code

Instead of sticking this all in
your View Controller, subclass
views as well (i.e. make your
own CustomButton rather than
doing all your UI work in your
view controllers)

Avoid adding too much to View Controllers!
With more complicated UI’s,
you’ll end up having lots of
outlets, actions, and view
customization code

Instead of sticking this all in
your View Controller, subclass
views as well (i.e. make your
own CustomButton rather than
doing all your UI work in your
view controllers)

Demo
Views, View Controllers, Outlets, Actions

Check-in

Autolayout

• Display your app on
different screen sizes

• Optimize for different
resolutions

• Internationalize your UI
(Localization)

• Resize/layout elements
for device rotations

Adaptive UI

• Constraint based, descriptive layout system
• Creating an adaptive interface that responds to

changes in screen size and device orientation

What is Auto Layout

What is a Constraint
• Linear equations that relate

different objects parts with one
another.

• Control + Drag from view to
other view

• In Code:
• Layout anchors:

• NSLayoutAnchor
• NSLayoutConstraint

Creating Constraints

let constraint =
 view1.leadingAnchor.constraint(
 equalTo: view2.trailingAnchor,
 constant: 8)

constraint.isActive = true

Creating Constraints : The Philosophy

View

1. X Position
2. Y Position
3. Height
4. Width

• Xcode will let you know if
you’re missing a
constraint

• Constraints will turn red
• Preview feature let’s you

test your work

Missing Constraints

• Alignment
• Align Objects with

each other

• Pin
• Adds space to nearest

neighbor (Can be a
superview or itself)

Types of Constraints

• Height - Height of View
• Width - Width of View
• Top - Vertical Spacing to Top View
• Bottom - Vertical Spacing to Bottom View
• Baseline - Align Baseline
• Leading - Spacing to Left View
• Trailing - Spacing to Right View
• Center X - Center Align Horizontally
• Center Y - Center Align Vertically

List of Constraint Types

• Item 1
• Attribute 1
• Relationship
• Multiplier
• Item 2
• Attribute 2
• Constant

Formal Constraint Properties

Demo

Next Lab : Auto Layout
Confused on AutoLayout? More Info Here

No Lecture next week (will have lab)

Lab 1 : Xcode Tutorial
Due Tonight at 11:59pm if you did not

check off during lab

https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/AutolayoutPG/index.html#//apple_ref/doc/uid/TP40010853-CH7-SW1

