
iOS DeCal : Lecture 5
Core Location, MapKit, AVFoundation, and Core Data

March 7, 2017

Lab 4 (Pokedex) now due next Tuesday (11:59pm)
No new lab will be assigned this week

This week lab : Lab 4 + Project 2 help

Attendance still required

Project 2 Part 1(Snapchat Clone) due next Tuesday

Announcements

Please re-download your submission to make sure
it works locally

Images only get preserved when you use the
Github submission feature.

Make sure all the extra files you use are copied
into the project directory

If you received a low score due to an application
bug, either resubmit or come show us your app
after class

Note on Gradescope Submissions

Core Location

Map Kit

AVFoundation

Core Data

Overview : Today’s Lecture

Core Location

GPS drains battery and is unreliable in

dense urban and indoor environments

Need accurate location services…

What can you do?

Review: : Internet - XPS

XPS - Hybrid Positioning
System

Use crowd-sourced
database of Wi-Fi hotspot
and cell tower locations

Core Location

Review: : Internet - XPS

Before getting a user’s location, they have to
have enabled Location Services for your app

Core Location : Permissions

let manager = CLLocationManager()

if !CLLocationManager.locationServicesEnabled()
{
 //ask for user’s location

}

When In Use vs. Always

Core Location : Permissions

manager.requestWhenInUseAuthorization()

manager.requestAlwaysAuthorization()

Let’s say you always want the user’s location
Even when not in the app (background)

switch CLLocationManager.authorizationStatus() {
 case .authorizedAlways:
 break
 case .notDetermined:
 manager.requestAlwaysAuthorization()
 case .authorizedWhenInUse, .restricted, .denied:
 //prompt notification: see next slides
}

Core Location : Permissions

let alertController = UIAlertController(
 title: "Background Location Access Disabled",
 message: "In order to ____, please open

 Settings and set location access
 for this app to 'Always'.",

 preferredStyle: .alert)

Alerts

let openAction = UIAlertAction(title: "Open Settings",  
 style: .default) { (action) in
 if let url = NSURL(string: UIApplicationOpenSettingsURLString) {
 UIApplication.shared.open(url as URL,
 options: [:],
 completionHandler: nil)
 }
}

alertController.addAction(openAction)

Alerts

let cancelAction = UIAlertAction(title: "Cancel",
 style: .cancel,
 handler: nil)

alertController.addAction(cancelAction)

Alerts

To actually present the alert in your desired

context...

self.present(alertController,
 animated: true,
 completion: nil)

Alerts

Fetch user’s location once

let manager = CLLocationManager()

override func viewDidLoad() {

super.viewDidLoad()
// manager is your CLLocationManager
manager.delegate = self //important!!
manager.desiredAccuracy =
kCLLocationAccuracyBest
manager.requestLocation() //type of update

}

Core Location : One Time Location

Core Location : One Time Location

Calling the method
manager.requestLocation()

Will call either:

locationManager(_:didUpdateLocations:)
locationManager(_:didFailWithError:)

from your CLLocationManagerDelegate class (that’s

why you must set the delegate!)

Standard Location Service
For continuous updates (e.g. Maps)
manager.startUpdatingLocation()

Significant-Change Loc. Service
Update only when location changes
manager.startMonitoringSignificantLocationChanges()

Core Location : Location over Time

Must implement appropriate delegate
method(s) in View Controller to receive data

func locationManager(manager: CLLocationManager,
 didUpdateLocations locations:

 [CLLocation]) {
 // most recent location update at the end of the array
 let latestLocation = locations[locations.count - 1]
 // do something
}

Core Location : Location over Time

A period of time a user has spent in a single location,
including both a coordinate and start/end timestamps

// initiating visit event updates
manager.startMonitoringVisits()
manager.stopMonitoringVisits()

// receive data via delegate method(s)
func locationManager(manager: CLLocationManager,
 didVisit visit: CLVisit) {
}

Core Location : CLVisit

Monitor boundary crossings for defined
geographical regions (geofencing)

// define desired geographical region and radius
let currRegion = CLCircularRegion(center:
 CLLocationCoordinate2D(latitude: 37,
 longitude: 122),
 radius: 200,
 identifier: "Berkeley")

// initiating region monitoring
manager.startMonitoring(for: currRegion)
manager.stopMonitoring(for: currRegion)

Core Location : CLRegion

Monitor boundary crossings for defined
geographical regions (geofencing)

//delegate method fires when user enters
func locationManager(manager: CLLocationManager,
didEnterRegion region: CLRegion) { … }

//delegate method fires when user exits
func locationManager(manager: CLLocationManager,
didExitRegion region: CLRegion) { … }

Core Location : CLRegion

CLFloor - get information about what floor
your user is on (returns int for floor)

iBeacons: developer.apple.com/ibeacon/

And more...

Core Location : Other

http://developer.apple.com/ibeacon/

Keep location data secure

Do not auto-track user

Only use Location Services when they are
needed

Core Location : User Trust

Map Kit

MapKit - Overview

API built off of CoreLocation

Embed maps directly to windows
or views

Some Features:
Annotate Map & Add Overlays
Plot Location
Jump to coordinates

MapKit Example

Easily embed an
interactive map within
your application with
annotations

Example: Yelp

Drag a “Map Kit View” from the Object Library
into your View Controller.

Embedding a Map : Storyboard

override func viewDidLoad() {
 super.viewDidLoad()
 let initialLoc = CLLocation(latitude:38,
 longitude:122)
 centerMapOnLocation(initialLoc) //custom
}

Custom Initial Map View

// in your map’s view controller
let regionRadius: CLLocationDistance = 1000

func centerMapOnLocation(location: CLLocation) {
 let coordinateRegion =
 MKCoordinateRegionMakeWithDistance(
 location.coordinate,
 regionRadius * 2.0,
 regionRadius * 2.0)
 mapView.setRegion(coordinateRegion,

 animated: true)
}

Custom Initial Map View

override func viewDidLoad() {
 let annotation = MKPointAnnotation()
 annotation.coordinate =
 CLLocationCoordinate2D(
 latitude: 24,
 longitude: 54)
 annotation.title = "Big Ben"
 annotation.subtitle = "London"
 mapView.addAnnotation(annotation)
}

Adding Annotations

What we have done so far

Created a Initial
Map View

Set a location

Added an
Annotation (with a
title, subtitle, and
coordinated)

Check In

AVFoundation

Cocoa framework for
AudioVisual items

Used to record, edit, and
stream media

Includes Players, Items,
ViewControllers, etc

AVFoundation - What is it?

Allows you to capture video,
photo, scan barcodes, etc.

Create a AVCaptureSession

Set the AVCaptureDeviceInput
depending on what you want to
capture (video, photo)

Begin media capture by calling
startRunning() on your session

AVCapture - Overview

VSCO

Allows you to capture video,
photo, scan barcodes, etc.

Note: If you just need to capture
photo and video without custom
formatting, use the UIKit
framework instead (check out
UIImagePickerController)

AVCapture - Overview

VSCO

Play audio in your App

Create an AVAudioPlayer to play
your audio on

Create an AVPlayerItem for each
sound clip / song

Use the player to play, pause,
rewind, and fast forward your
AVPlayerItems

AVPlayer - Overview

Apple Music

Create an AVPlayerItem for each song / sound
you want played.

Each AVPlayerItem is a single instance being
played by AVPlayer

let item = AVPlayerItem(URL: someURL!)

AVPlayerItem - Initialization

Initialize an AVPlayer with or without a Player
Item. You will add items to the player, then use
the player to play these items.

let player = AVPlayer()

let player = AVPlayer(playerItem: item)

AVPlayer - Initialization

Once you’ve added some AVPlayerItems to
your player, you can play, pause, fast forward,
replace, etc.

let player = AVPlayer(playerItem: item)

player.play()
player.pause()
player.seek(to: <CMTime>)
player.replaceCurrentItem(with: newSong)

AVPlayer - Playback

import AVFoundation
...

func playSongFromURL(songURL: URL) {
let song = AVPlayerItem(url: songURL)
let player = AVPlayer(playerItem: song)
if (player.currentItem!.status == .readyToPlay) {

player.play()
 }
}

AVPlayer - Example

import AVFoundation
...

func playSongFromURL(songURL: URL) {
let song = AVPlayerItem(url: songURL)
let player = AVPlayer(playerItem: song)
if (player.currentItem!.status == .readyToPlay) {

player.play()
 }
}

AVPlayer - Example

Import the AVFoundation framework
at the top of your file

import AVFoundation
...

func playSongFromURL(songURL: URL) {
let song = AVPlayerItem(url: songURL)
let player = AVPlayer(playerItem: song)
if (player.currentItem!.status == .readyToPlay) {

player.play()
 }
}

AVPlayer - Example

Create an AVPlayerItem from a url or file in your
application

import AVFoundation
...

func playSongFromURL(songURL: URL) {
let song = AVPlayerItem(url: songURL)
let player = AVPlayer(playerItem: song)
if (player.currentItem!.status == .readyToPlay) {

player.play()
 }
}

AVPlayer - Example

Add that AVPlayerItem to an AVPlayer (here, we are
initializing the AVPlayer with the item)

import AVFoundation
...

func playSongFromURL(songURL: URL) {
let song = AVPlayerItem(url: songURL)
let player = AVPlayer(playerItem: song)
if (player.currentItem!.status == .readyToPlay) {

player.play()
 }
}

AVPlayer - Example

Now you can play, pause, seek, etc.

Core Data

Framework that allows you to store and retrieve
data from a database in an OOP way

Allows data persistence
This lets users store data in your application,
that will persist between application launches

Use it to create data models that can be added to
and queried throughout your project

Core Data : What is it?

When do you want to use
Core Data?

Examples

Allow users to save specific
podcasts to their phone

Notes application that stores
text + photos to your phone

Any app requiring saving state

Core Data : What is it?

Image : NPR One

Data Model
Appears as a .xcdatamodeled file
Think of it as a spreadsheet

Entities and Attributes
Think of Entities as Classes or Objects, and
attributes are the properties of those objects.

Example: For an app that stores a list of dog profiles, entities are
a array of Dog objects, and Attributes are name, age, fur color,
etc.

Core Data : Vocabulary

NSManagedObject
What an Entity appears as in our code

NSManagedObjectContext
Allows you to access (store/query) data from the
Container. Found in your App Delegate

AppDelegate.swift
Contains Core Data related methods and
properties you’ll need to interact with

Core Data : Vocabulary

Code available at github.com/paigeplan/Core-Data-Demo

Core Data : Today’s Example

Allow user to add a
name, age, and set
whether or not dog has
fur.

Using Core Data, save
this user data to the
user’s device, so they can
store a list of dogs

https://github.com/paigeplan/Core-Data-Demo

1. Enable Core Data: Check “Use Core Data”
when creating a new application

2. Create an Entity: for whatever you want to save
the state for (i.e. Dog, Person, Profile)

3. Store Data to Core Data: Save user input data
in an Entity

This involves accessing NSManagedObjectContext,
which you get through your App Delegate’s
NSPersistentContainer

4. Fetch Data from Core Data: Access stored data
using your context via the method fetchRequest()

Core Data Checklist

Core Data : Enabling Core Data

Create a new Project

Create a new Project

Core Data : Enabling Core Data

Core Data : Creating an Entity

Open the .xcdatamodeld
file (data model file)

Create an Entity for the
object you want to persist

Core Data : Creating an Entity

Name your entity (object)

Core Data : Creating an Entity

Add attributes (Model object instance variables)

Core Data : Creating an Entity

Add attributes (Model object instance variables)

Core Data : Creating an Entity

Core Data : Storing Data

Figure out what user input
that you want to save.

In this example, this involves
getting the Name TextView’s

text, Age label text, and
switch value

In the next slide, we’ll store
these values in Core Data

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
if let dogName = dogNameTextField.text {

let dog = Dog(context: context)
dog.name = dogNameTextField.text
dog.hasFur = furSwitch.isOn
dog.age = Int16(ageLabel.text)!
appDelegate.saveContext()

}

Core Data : Storing Data

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
if let dogName = dogNameTextField.text {

let dog = Dog(context: context)
dog.name = dogNameTextField.text
dog.hasFur = furSwitch.isOn
dog.age = Int16(ageLabel.text)!
appDelegate.saveContext()

}

Core Data : Storing Data

First, get a reference to your App Delegate

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
if let dogName = dogNameTextField.text {

let dog = Dog(context: context)
dog.name = dogNameTextField.text
dog.hasFur = furSwitch.isOn
dog.age = Int16(ageLabel.text)!
appDelegate.saveContext()

}

Core Data : Storing Data

Get the context from the App Delegate. We need
it to save our new Dog Object

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
if let dogName = dogNameTextField.text {

let dog = Dog(context: context)
dog.name = dogNameTextField.text
dog.hasFur = furSwitch.isOn
dog.age = Int16(ageLabel.text)!
appDelegate.saveContext()

}

Core Data : Storing Data

Link Dog to context. Dog is a
NSManagedObjectContext

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
if let dogName = dogNameTextField.text {

let dog = Dog(context: context)
dog.name = dogNameTextField.text
dog.hasFur = furSwitch.isOn
dog.age = Int16(ageLabel.text)!
appDelegate.saveContext()

}

Core Data : Storing Data

Set the dog’s attributes

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
if let dogName = dogNameTextField.text {

let dog = Dog(context: context)
dog.name = dogNameTextField.text
dog.hasFur = furSwitch.isOn
dog.age = Int16(ageLabel.text)!
appDelegate.saveContext()

}

Core Data : Storing Data

Save dog to Core Data using saveContext()

Core Data : Retrieving Data

Now that we can store user
data to Core Data, we need a

way to retrieve this data so
we can display / use it.

To do this we’ll need to use
our App Delegate and

context again

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
var dogs: [Dog] = []

func fetchDogsFromCoreData() {
 do {
 dogs = try context.fetch(Dog.fetchRequest())
 }
 catch {
 print(“Fetch failed :(")
 }
}

Core Data : Retrieving Data

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
var dogs: [Dog] = []

func fetchDogsFromCoreData() {
 do {
 dogs = try context.fetch(Dog.fetchRequest())
 }
 catch {
 print(“Fetch failed :(")
 }
}

Core Data : Retrieving Data

Again, get App Delegate and context

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
var dogs: [Dog] = []

func fetchDogsFromCoreData() {
 do {
 dogs = try context.fetch(Dog.fetchRequest())
 }
 catch {
 print(“Fetch failed :(")
 }
}

Core Data : Retrieving Data

Initialize an array to store your fetched Objects

let appDel = UIApplication.shared.delegate
 as! AppDelegate

let context = appDel.persistentContainer.viewContext
var dogs: [Dog] = []

func fetchDogsFromCoreData() {
 do {
 dogs = try context.fetch(Dog.fetchRequest())
 }
 catch {
 print(“Fetch failed :(")
 }
}

Core Data : Retrieving Data

Populate this array with the Objects the user saved

/// Uses the App Delegate's Context to get the dogs
saved to Core Data
func fetchDogsFromCoreData() {
 do {
 let request = NSFetchRequest<NSManagedObject>

 (entityName: "Dog")
 // only get 20 objects at a time
 myRequest.fetchBatchSize = 20
 // only give the first 100
 myRequest.fetchLimit = 100
 savedDogs = try context.fetch(myRequest) as! [Dog]
 } catch {
 print("Fetching Dogs from Core Data failed :(")
 }
}

Core Data : Retrieving Data

Can also set request limits / batch sizes if dealing
with a lot of data

Core Data : Result!

Now the dogs the user
has added will now be
saved to disc.

We now don’t have to
worry about data
disappearing when the
user force closes app or
turns off phone

Next Lecture: CocoaPods and Firebase

Lab 4 : Pokedex
Due next Tuesday at 11:59pm

Proj 2 Pt 1 : Snapchat Clone
Due next Tuesday at 11:59pm

