
iOS DeCal : Lecture 7
Firebase

March 21, 2017

Custom App Proposal and Lab 5 due tonight
Make sure you submit both to Gradescope (even if
you got checked off in lab)

Project 2 Part 2 Released Tonight (due 4/11)
You will need an iOS device with a camera for testing
Can work with a partner

Custom App Proposals next Thursday during lab
All group members must attend
Please attend the lab your TA assigns to you (via email)

Announcements - 3/21

Sync vs. Async

Recap Closures

Intro to Firebase and BaaS

Managing Users

Saving and Retrieving Data

File Storage

Adhering to MVC Principles

Overview : Today’s Lecture

Sync vs. Async Tasks

Fact #1: Network requests are slow.
Fact #2: Users hate waiting.

• We have almost no control over the time it
takes to make a request to a server and wait
for its response (especially with bad internet).

• Our goal is to minimize the latency that the
user actually sees at any point.
• Users should never have to sit on a frozen screen.

The problem with network requests

Blocks a process until the task is complete

Pros:
• Guarantee that we get results before going on to the

next task.
• Somewhat easier implementation (don't have to worry

about thread management).
Cons:

• User has to wait for task to finish before being able to
do anything else.
• USERS HATE WAITING!!!

Synchronous Tasks

Synchronous Tasks: Example

Run out of order, in parallel with the main thread so that
code can continue to execute while waiting.

• Most iOS apps perform network requests in the
background
• Example: loading a TableView and refreshing it once

data is returned.
• Introduces a new challenge:

• What if the next line of code after the network request
is evaluated before the request finishes?

Asynchronous Tasks

Closures: self-contained blocks of functionality that can
be passed around in your code. 

This means we can pass functions around as parameters to
other functions!

Why might this be useful for solving our async task problem?

Closures Revisited

Suppose we made an asynchronous network request and
wanted to trigger an action only after we knew the request
had completed.

Using Closures as Completion Handlers

We usually look at functions with completion handlers as
"black boxes" - we assume they do the heavy lifting, and we
just tell them what to do at the end.

• What are they doing behind the scenes?

Implementing functions with completion handlers

Firebase

How is data usually stored?
Option 1: Make requests to server-side code and let the
server do the dirty work of saving/retrieving from a
database.

Option 2: Use something like SQLite or CoreData
independently from a server but with more tedious work in
terms of actually managing the database.

Using BaaS tools

Backend as a Service tools provide backend cloud storage
support to mobile developers through simple API calls.

• Abstracts away the complexities of database
implementation

• No need to write any server-side code
• Many offer a lot of additional tools that simple MySQL/

SQLite databases don't support

1. It's real-time! Allows us to update the view as soon as
something in the database changes

2. Has strong support for iOS and Android as well as Web,
Unity, C++

3. Thorough documentation - see https://
firebase.google.com/docs/ios/setup

4. Can be easily incorporated into project via Cocoapods
5. Supports not only simple data storage but also

authentication, file storage, cloud messaging, and
analytics.

6. Biggest competitor, Parse, shut down in 2015.

Why Firebase?

https://firebase.google.com/docs/ios/setup
https://firebase.google.com/docs/ios/setup
https://firebase.google.com/docs/ios/setup

Firebase is built on a NoSQL database
• Literally no SQL involved - data stored as a JSON tree

How does Firebase work?

• Data represented as a set of
nodes, each with
corresponding child nodes

• Retrieve data within app as a
dictionary with key-value
pairs.

Managing Users

For any application, we need to be able to:
• Create accounts for users
• Store a user's authentication state
• Store a user's basic information (name, profile pic, etc)
• Associate data objects (messages, photos, etc.) to the

user who created them.

Firebase allows us to handle this by assigning unique user
ID's

User-Driven Data

For any user, Firebase stores:
• A unique user ID
• Email address
• Display name
• Photo URL

Firebase maintains an Auth instance which keeps track of
the current user.

• Persists the user's state so that closing the app or losing
connection doesn't sign the user out.

Firebase Users

Creating a new user

Signing in

Setting a user's display name

Getting the current user
If we want to access the properties of the currently signed in
user, we can do something like:

We can also use the currentUser variable to check if a user is
already signed in (instead of logging in every time).
However, it is safer to use a listener:

Saving/Retrieving Data

Structuring Data
Recall that data is stored on Firebase as a JSON tree.

• Each time we add data to the tree, it becomes a node
in the tree with a key and value.

• We can access a value in the tree by following its key-
path in the tree.

• If we attempt to access a node in the database, we get
access to all of its children as well.
• Potential pitfalls of this?

Writing Data to Firebase
Create a reference to the root node:

Save data to a node:

• We can also specify the entire path directly:

Save multiple values to a node:

 

Reading Data from Firebase
Create a listener (called when a particular node changes):

Note that the code inside the closure will execute every time
the user's node on Firebase (or any of its children) changes.

• We can also query Firebase a single time by calling the
observeSingleEvent function instead.

Check Ins

Storing Files

How does Firebase store files?
Firebase's database is only capable of storing numbers,
arrays, dictionaries, and strings.

What if we want to store an image? (e.g. Snapchat Clone)

Firebase has a separate module for storage where we can
upload all of our files - then we can just store its path in the
storage section as a string in the database.

 

Store an image on Firebase
Just like with the database, we need a reference to the root
node of the storage module:

Then we can upload a file to a specific path as:

Download an image from Firebase
We can download an image either by using its path:

Or by its download URL:

Demo

Custom App Proposal
Due Tonight at 11:59pm

