
iOS DeCal : Lecture 8
UI / UX and Programmatic Design

April 4, 2017

Snapchat Clone Part 2 due next Tuesday

Custom App Checkins (this Thurs during lab)
Be prepared to talk to your assigned TA about your
progress

Remember to check your Attendances
Can be found on Piazza
Let us know if we made a mistake!

Announcements - 4/4

iOS Human Interface Guidelines (HIG)

Programmatic Design

Overview : Today’s Lecture

Your “go-to” resource for best practices concerning correct
usage / placement / properties of UI elements (link)

iOS Human Interface Guidelines

https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/

New in iOS 10
iMessage Integration

Enables you to implement a Messaging
Extension for your app

Can share text, photo, stickers, interactive
games (in-message!)

For iMessage Apps, be sure to have a
distinct focus (should be relatively simple)

From the guidelines “Don’t try to design one app that
combines both stickers and ridesharing, for example.”

iOS Human Interface Guidelines

https://developer.apple.com/ios/human-interface-guidelines/extensions/messaging/
https://developer.apple.com/ios/human-interface-guidelines/extensions/messaging/

New in iOS 10
Integration with Siri

Allow users to access your app through
voice controls

Can be useful for apps involving audio
and video calling, messaging, payments,
fitness, directions, etc.

For Siri-Enabled Apps, recommended to
minimize interaction

Users expect a fast response (stay focused,
don’t provide more information than
needed)

iOS Human Interface Guidelines

iOS Human Interface Guidelines
New in iOS 10
Search Widgets

Display notifications from you application
on the user’s Search an Home Screen

Very customizable (can add buttons,
images, layout customization, etc.)

iOS Human Interface Guidelines
New in iOS 10
Search Widgets

Display notifications from you application
on the user’s Search an Home Screen

Very customizable (can add buttons,
images, layout customization, etc.)

To view widgets

Search Screen > accessed by swiping
to the right on Home or Lock Screen

iOS Human Interface Guidelines
New in iOS 10
Search Widgets

Display notifications from you application
on the user’s Search an Home Screen

Very customizable (can add buttons,
images, layout customization, etc.)

To view widgets

Home Screen > apply pressure on an
app icon using 3D Touch

iOS HIG : Interface Terminology
Bars
Lets your users know “where” they are in their
application. May contain buttons to trigger
navigation (segues) and titles to clarify location
in app

Views
Contain the content of what the users sees. This
includes both the entire “screen” visible, as well
as the other subviews (text, graphics, etc.)

Controls
Buttons, text fields, segmented controls, pickers,

iOS HIG : Interface Terminology
Bars
Lets your users know “where” they are in their
application. May contain buttons to trigger
navigation (segues) and titles to clarify location
in app

Views
Contain the content of what the users sees. This
includes both the entire “screen” visible, as well
as the other subviews (text, graphics, etc.)

Controls
Buttons, text fields, segmented controls, pickers,

iOS HIG : Interface Terminology
Bars
Lets your users know “where” they are in their
application. May contain buttons to trigger
navigation (segues) and titles to clarify location
in app

Views
Contain the content of what the users sees. This
includes both the entire “screen” visible, as well
as the other subviews (text, graphics, etc.)

Controls
Buttons, text fields, segmented controls, pickers,

iOS HIG : Interface Terminology
Bars
Lets your users know “where” they are in their
application. May contain buttons to trigger
navigation (segues) and titles to clarify location
in app

Views
Contain the content of what the users sees. This
includes both the entire “screen” visible, as well
as the other subviews (text, graphics, etc.)

Controls
Buttons, text fields, segmented controls, etc.

iOS HIG : Multitasking (iPad)

Designing with Multitasking in mind (example Slide Over)

iOS HIG : Multitasking (iPad)

Designing with Multitasking in mind (example Slide View)

iOS HIG : Branding
While it is important to have
an app “image” or “brand”,
avoid over-using logos, icon
images, etc.

Examples:
No need to include logo in every
view of your application
Focus on design schemes (fonts,
colors, layouts) rather than overt
branding
Avoid sacrificing screen space for
your brand unless necessary Frame.io

Video Collaboration

iOS HIG : Branding
While it is important to have
an app “image” or “brand”,
avoid over-using logos, icon
images, etc.

Examples:
No need to include logo in every
view of your application

Focus on design schemes (fonts,
colors, layouts) rather than overt
branding

Avoid sacrificing screen space for
your brand unless necessary INKS

State of Play Games

iOS HIG : Color
Add cohesion to your app by

defining a consistent color
scheme

Distinguish between
interactive and un-interactive

UI elements using color

Create color constants to be
used throughout your
application by creating

UIColor objects

iOS HIG : Color
Add cohesion to your app by

defining a consistent color
scheme

Distinguish between
interactive and un-interactive

UI elements using color

Create color constants to be
used throughout your
application by creating

UIColor objects

å

iOS HIG : Color
Add cohesion to your app by

defining a consistent color
scheme

Distinguish between
interactive and un-interactive

UI elements using color

Create color constants to be
used throughout your
application by creating

UIColor objects

Example
interaction enabled - blue
interaction disabled - gray
user input (un-interactive) -

black
System labels - gray

iOS HIG : Color
Add cohesion to your app by

defining a consistent color
scheme

Distinguish between
interactive and un-interactive

UI elements using color

Create color constants to be
used throughout your
application by creating

UIColor objects

Pages
By Apple

Common iOS Design practice
to set “Enabled Color” as your

app’s brand color

iOS HIG : Color
Add cohesion to your app by

defining a consistent color
scheme

Distinguish between
interactive and un-interactive

UI elements using color

Create color constants to be
used throughout your
application by creating

UIColor objects

Creating a UIColor object
with Predefined Colors

… and more (see UIColor)

https://developer.apple.com/reference/uikit/uicolor#2603618

iOS HIG : Color
Add cohesion to your app by

defining a consistent color
scheme

Distinguish between
interactive and un-interactive

UI elements using color

Create color constants to be
used throughout your
application by creating

UIColor objects

Creating a Custom UIColor
object using Color Spaces

iOS HIG : Color

Keep in mind what your app will look like for users with
various types of color vision impairment

App Colors
(standard)

App Colors
(without red-

green)

iOS HIG : Color

Photoshop has accessibility color filters to help you do this
http://www.adobe.com/accessibility/products/photoshop.html

App Colors
(standard)

App Colors
(without red-

green)

http://www.adobe.com/accessibility/products/photoshop.html

iOS HIG : Fonts and Typography

San Francisco
The System Font for iOS

Created by a team at Apple in 2014

iOS HIG : Fonts

When you add
new UI elements
with text to your

app, the font
family will default
to System (San

Francisco)

iOS HIG : Fonts

Set Font to
“Custom” to
change to a

different Font
Family

iOS HIG : Fonts

Generally, try to stick to
one font throughout
your entire app

Instead of using different
fonts, try experimenting with
a few different font styles,
weights, and sizes (all within
the same font family)

Helvetica Neue Thin
Helvetica Neue Light
Helvetica Neue Regular

Helvetica Neue Medium

Helvetica Neue Bold

Example: Helvetica Neue
typeface weights

Views and Geometry

The UIView class defines a rectangular
area on your user’s screen
This area can be used for managing content,
holding other views, registering touch events, etc.

Classes like UIImageView and UILabel are
special types of UIView’s (they both subclass
UIView)

Views / UIView

CGRect - defines position and size

CGRect(x: 0, y: 0,
 width: 100,
 height: 100)

CGPoint - defines a position
CGPoint(x: 0, y: 0)

CGSize - defines a size
CGSize(width: 100,
 height: 100)

CGRect and CGPoint
(0,0)

(50,100)

50

10
0

A UIView’s geometry is defined by the view’s
frame, bounds, and center properties

frame: CGFrame - the coordinates and
dimensions of the view in the coordinate
system of its superview

bounds: CGFrame - the coordinates and
dimensions of the view relative to itself
center: CGPoint - the center of the view
(used for positioning of the view)

UIView : Geometry

33

Frame vs. Bounds

View A frame
x, y = (0,0)
width = 450
height = 500

View A bounds
x, y = (0,0)
width = 450
height = 500

(0,0) 450

100
(80,50)

(0,0)

View A

View B

50
0

25
0

(0,0) 450

100
(80,50)

(0,0)

View A

View B

View A frame
x, y = (0,0)
width = 450
height = 500

View A bounds
x, y = (0,0)
width = 450
height = 500

View B frame
x, y = (?,?)
width = 100
height = 250

View B bounds
x, y = (?,?)
width = 100
height = 250

frame: uses the coordinate system of its superview
bounds: uses coordinates relative to itself

50
0

25
0

Programmatic Design

Up to now, you have been creating applications
using Storyboard / Interface Builder

Pros of Storyboard
Drag and drop interface makes it really easy to
visualize your application immediately
Relatively low learning curve
Great for small projects
The future of User Interface programming?

Storyboard : Review

Storyboard : Beneath the hood

Main.storyboard files are just XML files

You can view the file generated by Interface Builder by
opening up Main.storyboard in any text editor

Each time you add a button / label / constraint / etc.,
you’ll be able to see it added to this file

UILabel

Cons of using Storyboard
Easy to get cluttered for larger
scale applications

XML files are prone to merge
conflicts when using version
control (git)

No way to define layout
constants or easy way to reuse
UI layouts

Storyboard : Problems

Cons of using Storyboard
Easy to get cluttered for larger
scale applications

XML files are prone to merge
conflicts when using version
control (git)

No way to define layout
constants or easy way to reuse
UI layouts

Storyboard : Problems

Cons of using Storyboard
Easy to get cluttered for larger
scale applications

XML files are prone to merge
conflicts when using version
control (git)

No way to define layout
constants or easy way to reuse
UI layouts

Storyboard : Problems

Cons of using Storyboard
Easy to get cluttered for larger
scale applications

XML files are prone to merge
conflicts when using version
control (git)

No way to define layout
constants or easy way to reuse
UI layouts

Storyboard : Problems

No Storyboard Needed

UI elements (buttons / labels / views) are
instantiated in code and added as subviews

Programmatic Design

Pros
Better for version control
Scalable
Industry standard
Less limited

Cons
Steeper learning curve
Slower to get started
Code gets long

(especially when using
constraints)

Some important classes:
UIWindow - provides the backdrop for your
app’s content (usually only one per app)

UIScreen - defines the properties of the user’s
device (get the bounds of user’s device using
UIScreen.main.bounds)

UIViewController - manages a set of UIView’s

Programmatic Design

To create UI elements programmatically, you’ll
need to do the following:
1. Instantiate the UI element

i.e. let myButton = UIButton()

2. Add the view as a subview to your superview
using addSubview

i.e. superview.addSubview(myButton)

3. Set the position and size of your view either using
frames or layout constraints

Programmatic Design

Suppose we wanted to add a button to our view

Programmatic Design : Example

in Storyboard
Drag and drop a UIButton
into your storyboard from
the Object Library

Customize using
Attributes Inspector
Setup Constraints

Programmatically
let myBtn = UIButton(frame:
 CGRect(x: 50,

 y: 100,
 width: 200,
 height: 100))

myBtn.setTitle("Click me!”,
 for: .normal)

myBtn.backgroundColor = .red
view.addSubview(myBtn)

Programmatic Design vs Storyboard
… so which one is better?

Depends on what you are creating
Often times, a combination of both may be
the best solution

One idea - control navigation via
Storyboard, add UI elements
programmatically

Summary - iOS UI Implementation

To get rid of your storyboard,
delete both the Main.storyboard
file and it’s reference in Info.plist

To programmatically set the
initial view controller, you’ll
need to edit your
AppDelegate.swift. This is
equivalent to setting the “initial
view controller” property in
Storyboard (represented by the
arrow icon)

Programmatic Design (with no Storyboard)

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

// this code executes when your app is opened for the
 first time

 return true
 }
...

Programmatic Design (with no Storyboard)

Found in AppDelegate.swift

Setting your initial View Controller
Programmatically (Example)

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 window = UIWindow(frame: UIScreen.main.bounds)
 let myViewController = MyViewController()
 window?.rootViewController = myViewController
 window?.makeKeyAndVisible()
 return true
 }
...

Programmatic Design (with no Storyboard)

Found in AppDelegate.swift

The window displays the app’s content on
the device’s main screen.

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 window = UIWindow(frame: UIScreen.main.bounds)
 let myViewController = MyViewController()
 window?.rootViewController = myViewController
 window?.makeKeyAndVisible()
 return true
 }
...

Programmatic Design (with no Storyboard)

Found in AppDelegate.swift

Set the window to be
the size of the user’s screen

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 window = UIWindow(frame: UIScreen.main.bounds)
 let myViewController = MyViewController()
 window?.rootViewController = myViewController
 window?.makeKeyAndVisible()
 return true
 }
...

Programmatic Design (with no Storyboard)

Found in AppDelegate.swift

Instantiate a View Controller to be the
window’s root view controller

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 window = UIWindow(frame: UIScreen.main.bounds)
 let myViewController = MyViewController()
 window?.rootViewController = myViewController
 window?.makeKeyAndVisible()
 return true
 }
...

Programmatic Design (with no Storyboard)

Found in AppDelegate.swift

Set the window’s
root view controller property

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 window = UIWindow(frame: UIScreen.main.bounds)
 let myViewController = MyViewController()
 window?.rootViewController = myViewController
 window?.makeKeyAndVisible()
 return true
 }
...

Programmatic Design (with no Storyboard)

Found in AppDelegate.swift

Make the window visible to the user

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 window = UIWindow(frame: UIScreen.main.bounds)
 let myViewController = MyViewController()
 window?.rootViewController = myViewController
 window?.makeKeyAndVisible()
 return true
 }
...

Programmatic Design (with no Storyboard)

Found in AppDelegate.swift

Now the user will see “myViewController”
upon opening this application

Two ways of setting the size and position
of your views programmatically

1. Using frames / bounds (initWithFrame
CGRect, CGPoint)

2. Using AutoLayout (NSLayoutConstraints)

Positioning / Sizing Views

Positioning and Sizing Views Using Frames

let myFrame = CGRect(x: 0, y: 0,
 width: UIScreen.main.bounds.width - 16,
 height: 100)

let myButton = UIButton(frame: myFrame)

myButton.center = view.center

view.addSubview(myButton)

btn.translatesAutoresizingMaskIntoConstraints = false

// constraints to center the button horizontally in the view
let myConstraints = [
 btn.centerXAnchor.constraint(equalTo: view.centerXAnchor),
 btn.centerYAnchor.constraint(equalTo: view.centerYAnchor),
 btn.leadingAnchor.constraint(equalTo: view.leadingAnchor,
 constant: 8),
 btn.trailingAnchor.constraint(equalTo: view.trailingAnchor,
 constant: 8),
 btn.heightAnchor.constraint(equalToConstant: 100)
]

NSLayoutConstraint.activate(myConstraints)

Positioning and Sizing Views with AutoLayout

In this example, we create a list of constraints, then
batch activate them (rather than doing it one by one)

let constraint =
view2.leadingAnchor.constraint(
equalTo: view1.trailingAnchor,
constant: 8)

constraint.isActive = true

In both of these examples,
the spacing between 

views is set to 8 points

Programmatic AutoLayout

Equivalent
Storyboard Example

Layout Anchors

Programmatic AutoLayout

Layout Anchor
Properties

Use these
properties to

create
relationships

between views

Programmatic Design Demo
https://github.com/paigeplan/lec8

https://github.com/paigeplan/lec8

Snapchat Project Part 2
Due Tuesday at 11:59pm

Next Lecture : Delegates, Protocols, and
Advanced Swift

