1I0S DeCal : Lecture 8

Ul / UX and Programmatic Design

April 4, 2017

Announcements - 4/4

Snapchat Clone Part 2 due next Tuesday

Custom App Checkins (this Thurs during lab)
Be prepared to talk to your assigned TA about your

progress

Remember to check your Attendances

Can be found on Piazza
Let us know if we made a mistake!

Overview : Today’s Lecture

iIOS Human Interface Guidelines (HIG)

Programmatic Design

iIOS Human Interface Guidelines

Your “go-to” resource for best practices concerning correct
usage / placement / properties of Ul elements (link)

Overview

Design Principles
What's New in iOS 10

Interface Essentials

Interaction
Features
Visual Design
Graphics

Ul Bars

Ul Views

Ul Controls
Extensions
Technologies

Resources

Monday,Juhe13

N3 UP NEXT

Coffee with Allison

Flour & Co
10:00 - 10:30 AM
Tratfic is light. It will take 19 min.

=1 MAPS DESTINATIONS Show More

Coffee with Allison
10:00 AM, Flour & Co

9:41 AM 7 100% ..

“Get me a Lyft to SFO"

Lyft can be there in 5 minutes.

Do you want to request it?

Get a Car

)

/)
i‘;

f101)

To San Francisco International Airport >
ETA 5 minutes

Request

https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/

iIOS Human Interface Guidelines

New in iOS 10
IMessage Integration ¢ @ o

Enables you to implement a Messaging
Extension for your app

Can share text, photo, stickers, interactive
games (in-message!)

For iMessage Apps, be sure to have a
distinct focus (should be relatively simple)

From the guidelines "Don’t try to design one app that
combines both stickers and ridesharing, for example.”

https://developer.apple.com/ios/human-interface-guidelines/extensions/messaging/
https://developer.apple.com/ios/human-interface-guidelines/extensions/messaging/

IOS Human Interface Guidelines
New in iOS 10

Integration with Siri
Allow users to access your app through e e e - S
voice controls

Get a Car
Can be useful for apps involving audio L

v

N
AN, Y4
<0

and video calling, messaging, payments,
fitness, directions, etc.

To San Francisco International Airport >

For Siri-Enabled Apps, recommended to £TA s mingtes
o o . . . Cancel Reques
minimize interaction —

Users expect a fast response (stay focused,
don't provide more information than

needed)

iIOS Human Interface Guidelines

New in iOS 10
Search Widgets

Display notifications from you application
on the user's Search an Home Screen

Very customizable (can add buttons,
images, layout customization, etc.)

iIOS Human Interface Guidelines

New in iOS 10
Search Widgets

Display notifications from you application
on the user's Search an Home Screen

Very customizable (can add buttons,
images, layout customization, etc.)

To view widgets

Search Screen > accessed by swiping
to the right on Home or Lock Screen

iOS Human Interface Guidelines

New in iOS 10
Search Widgets

Display notifications from you application
on the user’s Search an Home Screen

NASDAQ 494956 |2 i

Very customizable (can add buttons, - Bica
images, layout customization, etc.)

To view widgets

Home Screen > apply pressure on an
app icon using 3D Touch

iOS HIG : Intertace Terminology

: - Bars
®ee00 Verizon = 1:05 PM @ 3 21%0) T, 17} . .
¢ Abums Lets your users know “where” they are in their
@ Tk, na sometimes: application. May contain buttons to trigger
'3‘: l::ntrtr:(t,\ arnett ’ . . . ' !
Gy | ooy navigation (segues) and titles to clarify location
© in app
<, Shuffle All
Elevator Operator VI eWS

' Pedestrian at Best

Contain the content of what the users sees. This
includes both the entire “screen” visible, as well
as the other subviews (text, graphics, etc.)

An lllustration of Loneliness (Sleeple...
Small Poppies

» Depreston

Controls

: B

Buttons, text tields, segmented controls, pickers,

iOS HIG : Intertace Terminology

. VR e —

o Bars
ooooo Verizon = 1:05 PM @ f 21% 0> r Py . .
< Albums Lets your users know “where” they are in their
Sometimes | Sit and \ e e ° °
mnkanasmeimes1 || application. May contain buttons to trigger
Anernatve + 201 navigation (segues) and titles to clarify location
© in app
>C Shuffle All
1 Elevator Operator VI eWS

* 2 Pedestrian at Best

Contain the content of what the users sees. This
includes both the entire “screen” visible, as well
as the other subviews (text, graphics, etc.)

3 An lllustration of Loneliness (Sleeple...

4 Small Poppies

5 Depreston

B v 7 © a| Controls
| 72 |

—

Buttons, text tields, segmented controls, pickers,

iOS HIG : Intertace Terminology

*

@
|)| eee0O Verizon = 1:05 PM @ % 21% 0>
< Albums
Sometimes | Sit and
hink, and Sometimes |

Just Sit

| [Courtney Barnett |

, IAIiumulvc e 2075

>4 Shuffle All
1 Elevator Operator
2 Pedestrian at Best
3 An lllustration of Loneliness (Sleeple...
4 Small Poppies

5 Depreston

B 9 0 © Q

Library

—

Bars

Lets your users know “where” they are in their
application. May contain buttons to trigger
navigation (segues) and titles to clarify location

In app

Views

Contain the content of what the users sees. This
includes both the entire “screen” visible, as well
as the other subviews (text, graphics, etc.)

Controls

Buttons, text tields, segmented controls, pickers,

iOS HIG : Intertace Terminology

ooooo Verizon = 1:05 PM @& X 21% 0

< Albums

Sometimes | Sit and
Think, and Sometimes |
Just Sit

Courtney Barnett
Alternative « 2015

>C Shuffle All

| Elevator Operator

* 2 Pedestrian at Best

3 Anlllustration of Loneliness (Sleeple...

2 Small Poppies

5 Depreston

: &

® 1 © Q

| S

—

Bars

Lets your users know “where” they are in their
application. May contain buttons to trigger
navigation (segues) and titles to clarify location

In app

Views

Contain the content of what the users sees. This
includes both the entire “screen” visible, as well
as the other subviews (text, graphics, etc.)

Controls

Buttons, text fields, segmented controls, etc.

iOS HIG : Multitasking (iPad)

Designing with Multitasking in mind (example Slide Over)

iOS HIG : Multitasking (iPad

eeeee 7T 9:41 AM 100% ..
o]
ercules | Q(:om:ord ~ Edit World Clock _+_
Pinole® Pleasant H \(‘ ‘! 3

O
Clayton

an Rafael
o)

gsen@uenin QNNMENG yTE o8 San Francisco /I O 24
Larkspur® El Cerrito " 7 o Walnut Creek [odz vV, +OHRS ¢ AM

Mill Valley® Albany JBerkeIey

o
o
Alamo n
y A Danville
o = ¢
YT (VP
o Tiburon go i yille Moraga

Ma. ,,,‘,?I :\w(‘:-‘,—.\.») . “‘@OAKLAND ‘hSnn Ramon Cupertlno 4
SAN FRANCISCO Today, +OHRS 2 AM

D, O
s Alameda)
< San Leandro \lll\l.)\n
-

San Lorenzo® ‘:‘Hayward CPIec NeW York 24
°Daly City Today, +3HRS PM

. v\Umn’\ City
SanBruno~ © (s2) |

Fremont
Burlingame o .
o
; Paris
o . FosterCity Newark . - PM
San Mateo ™ Bair Island Today, +9HRS
SO) Redwood (;ny(5
.0 o
El|Granad: Palo Alto "East Palo Alto o B
~ O
Half Moon Bay® de e|J|n ?
o Sunnyvale fomorrow, +15HR AM
Mountain View o)
®portola Vall G
SAN JOSE
i f 24 am
Saratoga
e N O
ca r Los Gat
C Par
] Ba W (ilder
2 Park o]

Yy Where do you want to go?

Designing with Multitasking in mind (example Slide View

iOS HIG : Branding |-

PLANET EARTH

@‘5{ T ﬂ' zn@ +5

While it is important to have
an app “image” or “brand”,
avoid over-using logos, icon
Images, etc.

Examples:

No need to include logo in every
view of your application

Focus on design schemes (fonts,
colors, layouts) rather than overt
branding

Avoid sacrificing screen space for
your brand unless necessary \" Frame.io
Video Collaboration

iOS HIG : Branding

While it is important to have
an app “image” or “brand”,
avoid over-using logos, icon
Images, etc.

Examples:

No need to include logo in every
view of your application

Focus on design schemes (fonts,

colors, layouts) rather than overt
branding l

Avoid sacrificing screen space for
INKS
State of Play Games

your brand unless necessary

IOS HIG : Color

Add cohesion to your app by
defining a consistent color
scheme

Distinguish between
interactive and un-interactive
Ul elements using color

Create color constants to be
used throughout your
application by creating
UIColor objects

Red Orange

Yellow Green

Teal Blue Blue

Purple Pink

IOS HIG : Color

ee000 Verizon = 2:54 PM @ X 33%0C 14

£ Contacts Edit

Add cohesion to your app by

defining a consistent color e
Cool Dog Friend

o

home home

scheme

Distinguish between

home

1(234) 567-8910

interactive and un-interactive

Ul elements using color my riend
Send Message
Create color constants to be Share Contact
used throughout your Add to Favorites
application by creating share My Location

UIColor objects

IOS HIG : Color

Add cohesion to your app by
defining a consistent color
scheme

Distinguish between
interactive and un-interactive
Ul elements using color

Create color constants to be
used throughout your
application by creating
UIColor objects

ee000 Verizon = 2:54 PM @ X% 33% [:M"

| £ Contacts El

| Cool Dog Friend|

QO

home home

home

1(234) 567-8910

Example
my friend interaction enabled - blue
interaction disabled - gray
Send Message user input (un-interactive) -
black
Share Contact System labels - gray

Add to Favorites —

Share My Location

IOS HIG : Color

Add cohesion to your app by
defining a consistent color
scheme

Distinguish between
interactive and un-interactive
Ul elements using color

Create color constants to be
used throughout your
application by creating

UIColor objects

Common iOS Design practice
to set "Enabled Color” as your

app’s brand color

Pages
By Apple

eee00 Verizon LTE 3:55 PM @ X 88%)4
!

|

iOS DeCal (Spring 2017) - Final Project

App Proposal Due - Tuesday, March 21 at 11:59pm
App Proposal Review - Thursday, March 23 (during lab)
Progress Check-In - Thursday, April 6 (during lab)
Code Due - Tuesday, May 2 at 11:59pm
Final Presentations - Friday, May 5 at 10:00am

For your final project, you will be creating an iOS application completely of your own
design. You may either work in a group (up to 4 people total) or individually, but keep

in mind that we will be expecting more from larger groups.

App Proposal (due 3/21)
Before starting on your project, you'll need to write up an app proposal providing an
overview of your application. Your proposal must include the following information:

1. Group Members - List each member of your group along with their

harkalav adit amail (ar i1iet vatir namea/ae-maitl if warkina alana)

IOS HIG : Color

Add cohesion to your app by

defining a consistent color
scheme

Distinguish between
interactive and un-interactive
Ul elements using color

Create color constants to be
used throughout your
application by creating

UIColor objects

Creating a UIColor object
with Predefined Colors

class var black: UIColor

A color object in the sRGB color space whose grayscale
value is 0.0 and whose alpha value is 1.0.

class var blue: UIColor

A color object whose RGB values are 0.0, 0.0, and 1.0 and
whose alpha value is 1.0.

class var brown: UIColor

A color object whose RGB values are 0.6, 0.4, and 0.2 and
whose alpha value is 1.0.

class var clear: UIColor

A color object whose grayscale and alpha values are both
0.0.

class var cyan: UIColor
A color object whose RGB values are 0.0, 1.0, and 1.0 and

whose alpha value is 1.0.

class var darkGray: UIColor

A color object whose grayscale value is 1/3 and whose alpha

value is 1.0.

... and more (see)

https://developer.apple.com/reference/uikit/uicolor#2603618

IOS HIG : Color

Add cohesion to your app by

defining a consistent color
scheme

Distinguish between
interactive and un-interactive
Ul elements using color

Create color constants to be
used throughout your
application by creating

UIColor objects

Creating a Custom UIColor
object using Color Spaces

init(white: CGFloat, alpha: CGFloat)

Initializes and returns a color object using the
specified opacity and grayscale values.

init(hue: CGFloat, saturation:
CGFloat, brightness: CGFloat, alpha:
CGFloat)

Initializes and returns a color object using the
specified opacity and HSB color space component
values.

init(red: CGFloat, green: CGFloat,
blue: CGFloat, alpha: CGFloat)

Initializes and returns a color object using the
specified opacity and RGB component values.

init(displayP3Red: CGFloat, green:
CGFloat, blue: CGFloat, alpha:
CGFloat)

Initializes and returns a color object using the
specified opacity and RGB component values in
the Display P3 color space.

IOS HIG : Color

590 00 OO 590 90 OO

Ao Col App Colors
olors

PP (without red-

(standard) green)

711/720 calories 711/720 calories

Keep in mind what your app will look like for users with
various types of color vision impairment

IOS HIG : Color

590 00 OO 590 90 OO

Aoo Col App Colors
olors

PP (without red-

(standard) green)

711/720 calories 711/720 calories

Photoshop has accessibility color filters to help you do this

http://www.adobe.com/accessibility/products/photoshop.html

iIOS HIG : Fonts and Typography

San Francisco

San Francisco
The System Font for iOS

Created by a team at Apple in 2014

1I0S HIG : Fonts

When you add
new Ul elements
with text to your

app, the font
family will default
to System (San
Francisco)

00:00.00

start stop

h ®&®& @ ¥ B ©

Label
Text Plain [T
Stopwatch
Color I Dark Gray Color [T
Font System Ultra Light 69.0 [T C
Font System - System [
Family F
Style Ultra Light N
Size 69 i
Done i
Autoshrink Fixed Font Size E
Tighten Letter Spacing
Highlighted HEEEE Default [T
Shadow Default [T
Shadow Offset 0[C -1.8
Width Height
View
Content Mode Left [T
Semantic Unspecified [T
Tag 1]
Interaction User Interaction Enabled
Multiple Touch
Alpha 1|(C
Background |] ﬂ
Tint B Default [T
Drawing Opaque
i
{1 @

h ®&®& @ ¥ B ©

Label

Text Plain d

10S HIG : Fonts i T—

Font System Ultra Light 69.0 [T] 2

Font Custom

Style Regular

[
Family Helvetica Neue [T
<

Size 17

Set Font to
“"Custom” to

Autoshrink Fixed Font Size

Tighten Letter Spacing

Highlighted IEEEE Default 2
s

change to a 00:00.00

Shadow Offset 0+ -1

different Font
F a m i Iy Cont::mh:::i IL_Jif:pecified :
Tag 0|C

start sto
P Interaction User Interaction Enabled

Multiple Touch

Alpha 1

Background | e S Iﬂ
O

Tint I Default

Drawing Opaque

LIidAAn

O I @ (=

1I0S HIG : Fonts

Generally, try to stick to
one font throughout
your entire app

nstead of using different

fonts, try experimenting with
a few different font styles,
weights, and sizes (all within
the same font family)

Example: Helvetica Neue

typeface weights

Helvetica Neue Thin
Helvetica Neue Light

Helvetica Neue Regular

Helvetica Neue Medium

Helvetica Neue Bold

Views and Geometry

Views / UlView

The UIView class defines a rectangular

area on your user's screen

This area can be used for managing content,
holding other views, registering touch events, etc.

Classes like UIImagevView and UILabel are

special types of UIView's (they both subclass
UIView)

CGRect and CGPoint

CGRect - defines position and size

CGRect(x: 0, y: 0,
width: 100,
height: 100)

CGPoint - detines a position
CGPoint(x: @, y: 0)

100

CGSize - defines a size

CGSize(width: 100,
height: 100) (50,100)

UlView : Geometry

A UIView’s geometry is defined by the view'’s
frame, bounds, and center properties

frame: CGFrame - the coordinates and
dimensions of the view in the coordinate
system of its superview

bounds: CGFrame - the coordinates and
dimensions of the view relative to itself

center: CGPoint - the center of the view
(used for positioning of the view)

(0,0)

500

450

Frame vs. Bounds

View A frame
x, y =(0,0)
width = 450
height = 500

View A bounds
x, y = (0,0)
width = 450
height = 500

(0,0)

500

450

View A frame
x, y = (0,0)
width = 450
height = 500

View A bounds
x, y = (0,0)
width = 450
height = 500

View B frame

X,y =(2,?)
width = 100
height = 250

View B bounds

x,y=(2,7)

frame: usesthe coordinate system of its superview width = 100

bounds:

uses coordinates relative to itself

height = 250

Programmatic Design

Storyboard : Review

Up to now, you have been creating applications
using Storyboard / Interface Builder

Pros of Storyboard
Drag and drop interface makes it really easy to
visualize your application immediately
Relatively low learning curve

Great for small projects
The tfuture of User Interface programming?

Storyboard : Beneath the hood

Stopwatch

00:00.00

start stop

Main.storyboard files are just XML files

® Storyboard.xml UNREGISTERED
<+ Storyboard.xml

You can view the file generated by Interface Builder by

opening up Main.storyboard in any text editor

Storyboard.xml UNREGISTERED

Each time you add a button / label / constraint / etc.,
you'll be able to see it added to this file

Storyboard : Problems

Cons of using Storyboard

Easy to get cluttered for larger
scale applications

XML files are prone to merge
conflicts when using version
control (git)

No way to define layout
constants or easy way to reuse
Ul layouts

Storyboard : Problems

Cons of using Storyboard

Easy to get cluttered for larger
scale applications

XML files are prone to merge
conflicts when using version
control (git)

No way to define layout
constants or easy way to reuse
Ul layouts

Storyboard : Problems

Cons of USing Storyboard neilinglis / gist:e238d5f22f85fa259ade

Created 3 years ago

Easy to get cluttered for larger
scale applications

XML files are prone to merge
conflicts when using version
control (git)

No way to define layout
constants or easy way to reuse
Ul layouts

<> Code

Storyboard Merge Conflict. Is there any sens

gistfilel.txt

<<<<<<< HEAD

<segue reference="
<segue reference="
<segue reference="
<segue reference="
<segue reference="

<segue reference="

<segue reference="
<segue reference="
<segue reference="
<segue reference="
<segue reference="
<segue reference="
>>>>>>> e9a57872e96f17a8d2d785e4de@132e75229a262

Revisions 1

ible

course of action for this?

kXa-Mw-CAj"/>
TDo-1S-nUS" />
hJu-8t-Kde"/>
haI-hu-Unh"/>
2ra-9a-Rv0"/>
ixW-dA-JInA"/>

BwM-Nh-uz9"/>
YWK-Ch-1fU"/>
haI-hu-Unh"/>
TDo-1S-nUS"/>
hJu-8t-Kde"/>
y7Z-qu-rerP"/>

Raw

Storyboard : Problems

Cons of using Storyboard

Easy to get cluttered for larger
scale applications

XML files are prone to merge
conflicts when using version
control (git)

No way to define layout
constants or easy way to reuse
Ul layouts

®
&8

o~ OO I~ WO N -

10
11
12
13
14
15
16
17
18

20
21
22
23
24
25
26
27

28

/]
//
//
/7
/7
//

//

s+ MainViewController.swift — Edited
l;.",, Programmatic Design Demo Pr..o E‘ MainViewController.swift MainViewController < >
MainViewController.swift
Programmatic Design Demo
Created by Paige Plander on 3/30/17.
Copyright © 2017 Paige Plander. All rights
reserved.

import UIKit

class MainViewController: UIViewController {

struct Constants {

static let buttonHeight: CGFloat = 100
static let buttonMargin: CGFloat = 128
static let buttonCornerRadius: CGFloat = 10
static let buttonTextSize: CGFloat = 24
static let buttonColor =
UIColor(colorLiteralRed: 1.5,

green: 0,
blue: 9,
alpha: 0.5)
static let viewColor = UIColor.red
static let textColor = UIColor.red

// Initialization of “button’
// This 1is one of many ways to customize your UI

Programmatic Design

No Storyboard Needed

Ul elements (buttons / labels / views) are
instantiated in code and added as subviews

Pros

Better for version control
Scalable

Industry standara

Less limited

Cons

Steeper learning curve
Slower to get started
Code gets long

(especially when using
constraints)

Programmatic Design

Some important classes:

UIWindow - provides the backdrop for your
app'’s content (usually only one per app)

UlScreen - defines the properties of the user’s
device (get the bounds of user’s device using
UIScreen.main.bounds)

UlViewController - manages a set of UlView's

Programmatic Design

To create Ul elements programmatically, you'll
need to do the following:
1. Instantiate the Ul element

l.,e. let myButton = UIButton()

2. Add the view as a subview to your superview
using addSubview

l.e. superview.addSubview(myButton)

3. Set the position and size of your view either using
frames or layout constraints

Programmatic Design : Example

Suppose we wanted to add a button to our view

in Storyboard

Drag and drop a UlIButton
into your storyboard from
the Object Library

Customize using
Attributes Inspector

Setup Constraints

Programmatically

let myBtn = UIButton(frame:

CGRect(x: 50,

y: 100,

width: 200,
height: 100))

myBtn.setTitle("Click me!”,
for: .normal)

myBtn.backgroundColor = . red

view.addSubview(myBtn)

Summary -i0S Ul Implementation

Programmatic Design vs Storyboard
... SO which one is better?

Depends on what you are creating

Often times, a combination of both may be
the best solution
One idea - control navigation via
Storyboard, add Ul elements
programmatically

Programmatic Design (with no Storyboard)

To get rid of your storyboard,
delete both the Main.storyboard
file and it's reference in Info.plist

To programmatically set the
initial view controller, you'll
need to edit your
AppDelegate.swift. This is
equivalent to setting the “initial
view controller” property in
Storyboard (represented by the
arrow icon)

Programmatic Design (with no Storyboard)

import UIKit Found in AppDelegate.swift

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Anyl?) —> Bool {

// this code executes when your app 1s opened for the
first time

return true

}

Setting your initial View Controller

Programmatically (Example)

Programmatic Design (with no Storyboard)

import UIKit Found in AppDelegate.swift

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Anyl?) —> Bool {

window = UIWindow(frame: UIScreen.main.bounds)

let myViewController = MyViewController()

window?.rootViewController = myViewController

window?.makeKeyAndVisible()

return true

}

The window displays the app’s content on

the device’s main screen.

Programmatic Design (with no Storyboard)

import UIKit Found in AppDelegate.swift

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Anyl?) —> Bool {
window = UIWindow(frame: UIScreen.main.bounds)
let myViewController = MyViewController()
window?.rootViewController = myViewController
window?.makeKeyAndVisible()
return true
s
e Set the window to be

the size of the user’s screen

Programmatic Design (with no Storyboard)

import UIKit Found in AppDelegate.swift

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Anyl?) —> Bool {

window = UIWindow(frame: UIScreen.main.bounds)

let myViewController = MyViewController()

window?.rootViewController = myViewController

window?.makeKeyAndVisible()

return true

}

Instantiate a View Controller to be the

window’s root view controller

Programmatic Design (with no Storyboard)

import UIKit Found in AppDelegate.swift

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Anyl?) —> Bool {
window = UIWindow(frame: UIScreen.main.bounds)
let myViewController = MyViewController()
window?.rootViewController = myViewController
window?.makeKeyAndVisible()
return true
s
e Set the window's

root view controller property

Programmatic Design (with no Storyboard)

import UIKit Found in AppDelegate.swift

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Anyl?) —> Bool {

window = UIWindow(frame: UIScreen.main.bounds)

let myViewController = MyViewController()

window?.rootViewController = myViewController

window? .makeKeyAndVisible()

return true

}

Make the window visible to the user

Programmatic Design (with no Storyboard)

import UIKit Found in AppDelegate.swift

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Anyl?) —> Bool {

window = UIWindow(frame: UIScreen.main.bounds)

let myViewController = MyViewController()

window?.rootViewController = myViewController

window?.makeKeyAndVisible()

return true

}

Now the user will see “myViewController”

upon opening this application

Positioning / Sizing Views

Two ways of setting the size and position
of your views programmatically

1. Using frames / bounds (initWithFrame
CGRect, CGPoint)

2. Using AutolLayout (NSLayoutConstraints)

Positioning and Sizing Views Using Frames

let myFrame = CGRect(x: 0, y: 0,

width: UIScreen.main.bounds.width - 16,
height: 100)

let myButton = UIButton(frame: myFrame)

myButton.center = view.center

view.addSubview(myButton)

Positioning and Sizing Views with AutoLayout

btn.translatesAutoresizingMaskIntoConstraints = false

// constraints to center the button horizontally in the view
let myConstraints = [
btn.centerXAnchor.constraint(equalTo: view.centerXAnchor),
btn.centerYAnchor.constraint(equalTo: view.centerYAnchor),
btn. leadingAnchor.constraint(equalTo: view.leadingAnchor,
constant: 8),
btn.trailingAnchor.constraint(equalTo: view.trailingAnchor,
constant: 8),
btn.heightAnchor.constraint(equalToConstant: 100)

]

NSLayoutConstraint.activate(myConstraints)

In this example, we create a list of constraints, then

batch activate them (rather than doing it one by one)

Programmatic AutolLayout
Layout Anchors

let constraint =
view2. leadingAnchor.constraint(
equalTo: viewl.trailingAnchor,
constant: 8)

constraint.isActive = true

In both of these examples,
the spacing between
views is set to 8 points

Equivalent
Storyboard Example

Layout Anchor
Properties

Use these
properties to
create
relationships
between views

Programmatic AutoLayout

Top

[

Height
Leftor [_ P A Right or
Leading Conter Y T Trailing
|
Center X
|

Programmatic Design Demo
https://github.com/paigeplan/lec8

https://github.com/paigeplan/lec8

Snapchat Project Part 2
Due Tuesday at 11:59pm

Next Lecture : Delegates, Protocols, ana
Advanced Swift

