1I0S DeCal : Lecture ¢

Delegates, Protocols, Advanced Swift (GCD,
Closures, Structs/Enums)

April 11, 2017

Announcements - 3/21

Lab this week - project work day

Attend section with your group (either lab room)

Attendance required

Project 2-2 and Lab 6 due tonight (11:59)

Make sure to submit Lab 6 to Gradescope (even it
you got checked off)

Announcements - 3/21

What's Left

1T more lab assignment

2 more lectures

Final Presentations on 5/5 at 10am (Friday of
Dead Week)

Attendance is mandatory for a Pass

Overview : Today’s Lecture

Protocols

Delegates

Advanced Swift

Structs and Enums

GCD

Protocols

Protocols : Review

Protocol: a generic outline or skeleton

Set of rules that delegates must follow
Can be above a class declaration, or in own .swift

file

Classes that follow such rules are said to
"conform to the protocol”

Classes can conform to any number of protocols

Protocols : Review

protocol Vehicle {
var numWheels: Int { get }
func getSpeed() —> Double
mutating func refuel(percentage: Double)

For a class to conform to this protocol
SomeDe legate, it must implement the sendBack

and updateMode l methods

Protocols : Review

class SmartCar: Car, Vehicle {
var numwWheels = 4
func getSpeed(){
return self.speed
I3

func refuel(percentage: Double) {
self.gas += self.maxGas *x percentage
I3

}

SmartCar is a subclass of Car and conforms to the
protocol Vehicle

Protocols : Why Though?

Protocols are a way to express an APl more
concisely

Instead of forcing a caller to pass in a specific class, (i.e. Car) an API can let the

caller pass in whatever class they want...as long as it fulfills certain desired
requirements (is a Vehicle)

func getRide(v: Vehicle) {
return v
I3

Protocols don’t do any implementation

This means that they have zero storage associated with them, all storage is
provided by implementing classes.

Protocols : They are Types!

You may have seen delegates passed in through
functions (like Vehicle on the last slide). In general,
Protocols can be used just like types. This includes

using them as:

* Variable types

* Function parameters

* Function return values

...and pretty much anywhere else you see types

used.

Protocols : Declaration

protocol SomeProtocol : InheritedProtocoll,
InheritedProtocol2 A
var someProperty: Int { get set }
func aMethod(argl: Double,
arg2: String) —> SomeType
mutating func changeIt()
init(arg: Type)

Protocols : Decleration

protocol SomeProtocol : InheritedProtocoll,
InheritedProtocol2 {
var someProperty: Int { get set }
func aMethod(argl: Double,
arg2: String) —> SomeType
mutating func changeIt()
init(arg: Type)
I3

A protocol can inherit from any number of other protocols,
so long as it includes anything that those protocols require

Protocols : Decleration

protocol SomeProtocol : InheritedProtocoll,
InheritedProtocol2 A
var someProperty: Int { get set }
func aMethod(argl: Double,
arg2: String) —> SomeType
mutating func changeIt()
init(arg: Type)
}

Any variable that is required must be specified as either
{ get }orq{ get set }

{ get }: The variable only needs to be gettable

{ get set }: The variable must be settable as well as
gettable

Protocols : Decleration

protocol SomeProtocol : InheritedProtocoll,
InheritedProtocol2 A
var someProperty: Int { get set }
func aMethod(argl: Double,
arg2: String) -> SomeType
mutating func changeIt()
init(arg: Type)
}

Normal function requirement, must specity the return type it
there is one

Protocols : Decleration

protocol SomeProtocol : InheritedProtocoll,

InheritedProtocol2 A
var someProperty: Int { get set }
func aMethod(argl: Double,

arg2: String) —> SomeType
mutating func changelt()
init(arg: Type)
}

Adding the mutating keyword means that this method

must be capable of mutating the class/instance that is
conforming

(Note that you do NOT need to put the mutating
keyword in front of the function when you implement it in

Protocols : Decleration

protocol SomeProtocol : InheritedProtocoll,
InheritedProtocol2 A
var someProperty: Int { get set }
func aMethod(argl: Double,
arg2: String) —> SomeType
mutating func changeIt()
init(arg: Type)
}

You can even require that the implementor have a specitfic
initializer

Note that an implementing class needs to mark this
initializer as required.

Delegates

What is Delegation? : Review

Design Pattern

Allows objects to interact with each other
without creating dependencies
via Protocols, Delegates, and Data Sources

Delegation : Main use in MVC

Delegation serves as a blind connection from the
view to the controller.

The view assumes that it has some minion who is
capable of performing certain actions, and uses

this minion despite being blind to who that minion
actually is.

De

legation : Process

Delegation like this is accomplished by following

the following steps:

1. A view declares a protocol (i.e. what the controller will be doing for it
2. That view's APl has a delegate property with the protocol’s type

3. The view uses the delegate property to do things that the view can’t normally

do,

assuming that there is some controller actually doing that work

4. Some controller declares that it conforms to the protocol from #1

5.T
dec
6. T

nat controller sets the view's delegate property (from #2) to self, thus
aring that it is the delegate.

nat controller actually implements the protocol, so that it can do what it is

told to.

Delegation : Process

With that, the View is now hooked up to a
Controller!

The fun thing is, the View doesn’t actually know
anything about the Controller (besides that it is
capable of implementing the View’s protocol), so
the View remains generic/reusable.

Delegation Example

Example : RandomGenerator

protocol RandomNumberGenerator A{
func random() —> Double
s

class LinearCongruentialGenerator: RandomNumberGenerator A{
var lastRandom = 42.0
let m = 139968.0
let a 3877.0
let ¢ 29573.0
func random() —> Double {
lastRandom =
((lastRandom * a + c).truncatingRemainder(dividingBy:m))
return lastRandom / m

Example : RandomGenerator

protocol RandomNumberGenerator {
func random() —> Double
s

class LinearCongruentialGenerator: RandomNumberGenerator {
var lastRandom = 42.0
let m = 139968.0
let a 3877.0
let ¢ 29573.0
func random() —> Double {
lastRandom =
((lastRandom * a + c).truncatingRemainder(dividingBy:m))
return lastRandom / m

}

Stating that we conform to a protocol

Example : RandomGenerator

protocol RandomNumberGenerator A{
func random() -> Double
s

class LinearCongruentialGenerator: RandomNumberGenerator A{
var lastRandom = 42.0
let m = 139968.0
let a 3877.0
let ¢ 29573.0
func random() -> Double {
lastRandom =
((lastRandom * a + c).truncatingRemainder(dividingBy:m))
return lastRandom / m

}

Implementing the required function

Example : Using Protocols as Types

protocol RandomNumberGenerator A{
func random() —> Double
s

class Dice {

let sides: Int

let generator: RandomNumberGenerator

init(sides: Int, generator: RandomNumberGenerator) {
self.sides = sides
self.generator = generator

s

func roll() — Int {
return Int(generator.random() * Double(sides)) + 1

s

Example : Using Protocols as Types

protocol RandomNumberGenerator {
func random() —> Double
s

class Dice {
let sides: Int
let generator: RandomNumberGenerator

init(sides: Int, generator: RandomNumberGenerator) {
self.sides = sides

self.generator = generator

I
func roll() — Int {

return Int(generator.random() x Double(sides)) + 1
s

}

Declaring a variable of type RandomNumberGenerator, and declaring a function that takes in
a RandomNumberGenerator

Example : Using Protocols as Types

protocol RandomNumberGenerator A{
func random() -> Double
s

class Dice {

let sides: Int

let generator: RandomNumberGenerator

init(sides: Int, generator: RandomNumberGenerator) {
self.sides = sides
self.generator = generator

+

func roll() — Int {
return Int(generator.random() * Double(sides)) + 1

+

}

Since we know generator is a RandomNumberGenerator, we can assume that it has some
random() function that returns a Double

Example : Delegation

prots;gld[i)(l:;?Ggmiie{{ et) 1. A view declares a protocol

var delegate: DiceGameDelegate? { get set } 2. That view's APl has a delegate
func play()

property with the protocol’s type
orotocol DiceGameDelegate { 3. The view uses the delegate

func gameDidStart(_ game: DiceGame) property to do things that the view
func game(_ game: DiceGame,) v d : h
didStartNewTurnWithDiceRoll diceRoll: Int) [Cantnormally do, assuming that

func gameDidEnd(_ game: DiceGame) there is some controller actually
doing that work
4. Some controller declares that it

}

conforms to the protocol from #1
5. That controller sets the view'’s
delegate property (from #2) to
self,

6. That controller actually
implements the protocol, so that it
can do what it is told to.

Example : Delegation

prots;gld[i)(l:g?Ggmiie{{ et 3 1. A view declares a protocol

var delegate: DiceGameDelegate? { get set } 2. That view's APl has a delegate
f lay() - :
e PRy property with the protocol’s type
srotocol DiceGameDelegate { 3. The view uses the delegate

func gameDidStart(_ game: DiceGame) property to do things that the view

func game(_ game: DiceGame,) v d : that
didStartNewTurnWithDiceRoll diceRoll: Int) J€antnormally do, assuming tha

func gameDidEnd(_ game: DiceGame) there is some controller actually
doing that work
4. Some controller declares that it

}

conforms to the protocol from #1
5. That controller sets the view'’s
delegate property (from #2) to
self,

6. That controller actually
implements the protocol, so that it
can do what it is told to.

Example : Delegation

protocol DiceGame { 1. A view declares a protocol

;%Ecgéigé??éf%icgg;mif’elegate? { gt set) 2. That view's AP| has a delegate
; property with the protocol’s type
e e aaers; Dicecane 4 3. The view uses the delegate

let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
var square = 0
var board: [Int]
init() {
board = Array(repeating: @, count: finalSquare + 1)

property to do things that the view
can’t normally do, assuming that

board[@3] = +08; board[06] = +11; board[09] = +09; board[10] = +02 there is some Controner actua”y
board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
} 0
var delegate: DiceGameDelegate? d0|ng that WOI'I(
fune prayl) 4 4. Some controller declares that it
delegate?.gameDidStart(self)
gameLoop: while square != finalSquare { COﬂfOFmS to the protocol from #1
let diceRoll = dice.roll() . ,
delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll) 5. That controller sets the view's
switch square + diceRoll { (j | f
case finalSquare:
brenk samaleop elegate property (from #2) to
case let newSquare where newSquare > finalSquare: SEELF
continue gamelLoop !
default:
T quare += diceRoll 6. That controller actually
aare = boardaanere implements the protocol, so that it
} '
¥ _
delegate?.gameDidEnd(self) can do what it is told to.

by

Example : Delegation

protocol DiceGame { 1. A view declares a protocol
var dice: Dice { get } .
var delegate: DiceGameDelegate? { get set } 2 That v|ew’s API has d de-l.egate
func play()
} property with the protocol’s type
class SnakesAndLadders: DiceGame { 3 The VieW uses the delegate
property to do things that the view
can’t normally do, assuming that

let finalSquare = 25
let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
var square = 0
var board: [Int]
init() {
board = Array(repeating: @, count: finalSquare + 1)

board[@3] = +08; board[06] = +11; board[09] = +09; board[10] = +02 there is some Controner actua”y
board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
} 0
var delegate: DiceGameDelegate? d0|ng that WOI'I(
fune prayl) 4 4. Some controller declares that it
delegate?.gameDidStart(self)
gameLoop: while square != finalSquare { COﬂfOFmS to the protocol from #1
let diceRoll = dice.roll() . ,
delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll) 5. That controller sets the view's
switch square + diceRoll { (j | f ##22
case finalSquare:
L elegate property (from #2) to
case let newSquare where newSquare > finalSquare: SEELF
continue gamelLoop !
default:
T quare += diceRoll 6. That controller actually
aare = boardaanere implements the protocol, so that it
} '
¥ oo
delegate?.gameDidEnd(self) can do what it is told to.

by

Example : Delegation

protocol DiceGame { 1. A view declares a protocol

\EEcgéigé??éfenicgggminelegate? { get set } 2. That view's APl has a delegate
; property with the protocol’s type
e e aaers; Dicecane 4 3. The view uses the delegate

let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
var square = 0
var board: [Int]
init() {
board = Array(repeating: @, count: finalSquare + 1)

property to do things that the view
can’t normally do, assuming that

board[03] = +08; board[06] = +11; board[@09] = +09; board[10] = +02 there IS some Controner actua”y
board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
y .
var delegate: DiceGameDelegate? dOIﬂg that WOI'I(
fune prayl) 4 4. Some controller declares that it
delegate?.gameDidStart(self)
gameLoop: while square != finalSquare { COﬂfOFmS to the protocol from #1
let diceRoll = dice.roll()) ,
delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll) 5. That controller sets the view’s
switch square + diceRoll {
case, finaiSquare: delegate property (from #2) to
case let newSquare where newSquare > finalSquare: SEELF
continue gamelLoop !
default:
equare += diceRoll 6. That controller actually
auere = poardlanere implements the protocol, so that it
I /
¥ .
delegate?.gameDidEnd (self) can do what it is told to.

by

Example : Delegation

protocol DiceGame { 1. A view declares a protocol

Egcggigé??éfeoicgggmioelegate? [get set) 2. That view's APl has a delegate
; property with the protocol’s type
e e aaers; Dicecane 4 3. The view uses the delegate

let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
var square = 0
var board: [Int]
init() {
board = Array(repeating: @, count: finalSquare + 1)

property to do things that the view
can’t normally do, assuming that

board[@3] = +08; board[06] = +11; board[09] = +09; board[10] = +02 there is some Controner actua”y
board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
} 0
var delegate: DiceGameDelegate? d0|ng that WOI'I(
func playl 4, 4. Some controller declares that it
delegate?.gameDidStart(self)
gameLoop: while square != finalSquare { COﬂfOFmS to the protocol from #1
let diceRoll = dice.roll() . ,
delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll) 5. That controller sets the view's
switch square + diceRoll { (j | f
case finalSquare:
brenk samaleop elegate property (from #2) to
case let newSquare where newSquare > finalSquare: SEELF
continue gamelLoop !
default:
" equare += diceRoll 6. That controller actually
aare = boardaanere implements the protocol, so that it
} '
¥ _
delegate?.gameDidEnd(self) can do what it is told to.

by

Example : Delegation

protocol DiceGame {
var dice: Dice { get }
var delegate: DiceGameDelegate? { get set }
func play()

b

class SnakesAndLadders: DiceGame {

let finalSquare = 25

let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())

var square = 0

var board: [Int]

init() {
board = Array(repeating: @, count: finalSquare + 1)
board[03] +08; board[06] = +11; board[09] +09; board[10]
board[14] -10; board[19] = -11; board[22] -02; board[24]

+02
-08

I
var delegate: DiceGameDelegate?
func play() {
square = 0
delegate?.gameDidStart(self)
gameLoop: while square != finalSquare {
let diceRoll = dice.roll()
delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
switch square + diceRoll {
case finalSquare:
break gameLoop
case let newSquare where newSquare > finalSquare:
continue gamelLoop
default:
square += diceRoll
square += board[squarel
I
¥
delegate?.gameDidEnd(self)
b

1. A view declares a protocol
2. That view’s APl has a

delegate property with the
protocol’s type

3. The view uses the delegate
property to do things that the view
can't normally do, assuming that
there is some controller actually
doing that work

4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view's
delegate property (from #2) to
self,

6. That controller actually
implements the protocol, so that it
can do what it is told to.

Example : Delegation

protocol DiceGame { 1. A view declares a protocol
var dice: Dl?e { get } . ,
var delegate: DiceGameDelegate? { get set } 2 That view's AP| has a de-l_egate
func play()
; property with the protocol’s type
class SnakesAndLadders: DiceGame { :
et oo tSquare = a5 3. The view uses the delegate

let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())

var square = 0

var board: [Int]

init() {
board = Array(repeating: @, count: finalSquare + 1)
board[03] = +08; board[06] = +11; board[@9] = +09; board[10]
board[14] -10; board[19] = -11; board[22] -02; board[24]

property to do things that the
view can’t normally do, assuming

+02 Ithat there is some controller
actually doing that work

-08
by

var delegate: DiceGameDelegate?

fune prayl) 4 4. Some controller declares that it
delegate?.gameDidStart(self)
gameEoop: \%hilelsquare = finalSquare { COﬂfOFmS to the protocol from #1
let diceRoll = dice.roll() i ,
delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll) 5. That controller sets the view's
switch square + diceRoll { (j | f
case finalSquare:
brenk samaleop elegate property (from #2) to
case let newSquare where newSquare > finalSquare: SEELF
for C?Etinue gameLoop !
efault:
square += diceRoll 6. That controller actually
square += board[squarel . .
} implements the protocol, so that it
¥ _
delegate?.gameDidEnd(self) can do What It IS tOld to0.

by

Example : Delegation

protocol DiceGameDelegate {

func gameDidStart(_ game: DiceGane) 1. A view declares a protocol
func game(_ game: DiceGame, . ,

didStartNewTurnWithDiceRoll diceRoll: Int) 2. That view’'s APl has a de-l_egate
func gameDidEnd(_ game: DiceGame)

; property with the protocol’s type
class DiceGameTracker: DiceGameDelegate { :
o oreevane rackers b . 3. The view uses the delegate
init(: DiceGame) { . .
T var gane = gane oroperty to do things that the view
game.delegate = self , .
can’t normally do, assuming that
number0fTurns = 0 there is some controller actually
if game is SnakesAndlLadders {
print("Started a new game of Snakes and Ladders") doing that WOrl(
}

print("The game is using a \(game.dice.sides)-sided dice")

¥

func gameDidStart(_ game: DiceGame) {

) 4. Some controller declares that it

func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
numberOfTurns += 1

conforms to the protocol from #1

print("Rolled a \(diceRoll)")

} 5. That controller sets the view's
func gameDidEnd(_ game: DiceGame) A{
print("The game lasted for \(numberOfTurns) turns") delegate property (from #2) to
}
; self,

6. That controller actually
implements the protocol, so that it
can do what it is told to.

Example : Delegation

protocol DiceGameDelegate {

func gameDidStart(_ game: DiceGane) 1. A view declares a protocol
func game(_ game: DiceGame, . ,

didStartNewTurnWithDiceRoll diceRoll: Int) 2. That view’'s APl has a de-l_egate
func gameDidEnd(_ game: DiceGame)

} property with the protocol’s type
class DiceGaneTracker: Diceamebelegate { 3. The view uses the delegate
e e < game property to do things that the view
can’t normally do, assuming that
T = O asters 1 there is some controller actually

game.delegate = self
I
print("Started a new game of Snakes and Ladders") doing tha‘t WOrk

func gameDidStart(_ game: DiceGame) {

¥
print("The game is using a \(game.dice.sides)-sided dice")
y 4. Some controller declares that
func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) { j.
number0fTurns += 1 it conforms to the protocol from
print("Rolled a \(diceRoll)")
} #1
func gameDidEnd(_ game: DiceGame) A{
print("The game lasted for \(numberOfTurns) turns") 5. That Contro||er sets the view's
ks
’ delegate property (from #2) to

self,

6. That controller actually
implements the protocol, so that it
can do what it is told to.

Example : Delegation

protocol DiceGameDelegate {

func gameDidStart(_ game: DiceGane) 1. A view declares a protocol
func game(_ game: DiceGame, . ,

didStartNewTurnWithDiceRoll diceRoll: Int) 2. That view’'s APl has a de-l_egate
func gameDidEnd(_ game: DiceGame)

; property with the protocol’s type
class DiceGameTracker: DiceGameDelegate { :
o oreevane rackers b . 3. The view uses the delegate
init(: DiceGame) { . .
T var gane = gane oroperty to do things that the view
game.delegate = self , .
can’t normally do, assuming that
number0fTurns = 0 there is some controller actually
if game is SnakesAndlLadders {
print("Started a new game of Snakes and Ladders") doing that WOrl(
}

print("The game is using a \(game.dice.sides)-sided dice")

¥

func gameDidStart(_ game: DiceGame) {

) 4. Some controller declares that it

func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
numberOfTurns += 1

conforms to the protocol from #1

print("Rolled a \(diceRoll)")

} 5. That controller sets the view’s
func gameDidEnd(_ game: DiceGame) A{
print("The game lasted for \(numberOfTurns) turns") delegate property (from #2) to
}
; self,

6. That controller actually
implements the protocol, so that it
can do what it is told to.

Example : Delegation

protocol DiceGameDelegate {

func gameDidStart(_ game: DiceGame) 1. A view declares a protocol
func game(_ game: DiceGame, . ,

didStartNewTurnWithDiceRoll diceRoll: Int) 2 Tha‘t view's AP has a de-Legate
func gameDidEnd(_ game: DiceGame)

; property with the protocol’s type
class DiceGameTracker: DiceGameDelegate { :
o oreevane rackers b . 3. The view uses the delegate
init(: DiceGame) { . .
T var gane = gane oroperty to do things that the view
game.delegate = self , .
can’t normally do, assuming that
number0fTurns = there is some controller actually
if game is SnakesAndlLadders {
print("Started a new game of Snakes and Ladders") doing that WOrk
}

print("The game is using a \(game.dice.sides)-sided dice")

¥

func gameDidStart(_ game: DiceGame) {

) 4. Some controller declares that it

func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
numberOfTurns += 1

conforms to the protocol from #1

print("Rolled a \(diceRoll)")

} 5. That controller sets the view's
func gameDidEnd(_ game: DiceGame) {
print("The game lasted for \(numberOfTurns) turns") delegate property (from #2) to
}
; self,

6. That controller actually
implements the protocol, so that
it can do what it is told to.

5 Minute Break

Structs and Enums

Multithreading

Threads : Review

Thread - a single unit of execution in a
process

In applications that support multithreading
(i.e. IOS applications), you can delegate
different sections of code to be handled by
different threads

However, in iOS, you will deal with queues rather
than individual threads - more on that later!

Threads : Review

Why use multiple threads? CPU utilization

Examp
networ

e: Say we have an app that makes a

< request to read something from a

database

It we only have one thread, the CPU will be idle while

waiting for the network response.

A better idea is to use multiple threads, so we can do

other work (computations, Ul updates, etc.) while we

walt

Multithreading : Overview

Problem

We want our app to run as fast as possible, but we
have lengthy operations (calculations / data
traversals / network requests, etc.)

Solution

Put time-consuming computation on lower priority
threads

Put short operations that we need done right away
on higher priority threads (i.e. Ul updates)

Multithreading : Queues

In iOS, interaction with threads is done via
queues

Tasks (functions / closures / blocks of code) are
added to a queue

Once the task is popped off, it will be executed by
the thread associated with that queue

FIFO Queue

New To execution!
tasks Task 3 Task 2 Task 1
added here

Multithreading : Queues | EaEE

Tasks are sometimes

In iOS, interaction with threads is refe"efi“ as Swork
ItTems
queues

Tasks (functions / closures / blocks of code) are
added to a queue

Once the task is popped off, it will be executed by
the thread associated with that queue

FIFO Queue

New To execution!
tasks Task 3 Task 2 Task 1
added here

Multithreading : Queues

queue #1

- =
queue #2

N I N —
queue #3

Ditferent Queues will have different priorities

Queues : Two Difterent Types

Serial Queues
Executes a single task from the queue at a time

Tasks are handled in the order that they were
inserted (task 2 must wait for task 1 to complete
betore execution)

Concurrent Queues

Allows for multiple tasks to be executed in
parallel

Queues : Serial

In serial queues, newly added task must wait
until their predecessors complete.

Example: task 2 must wait until task 1 is
completed before it begins execution

Queues : Concurrent (background)

task 4

—>

—

In concurrent queues, tasks will still begin
execution in FIFO order, but do not have to
“wait” for other tasks to finish

Queues : Concurrent (background)

task 4

—>

—

In concurrent queues, tasks will still begin
execution in FIFO order, but do not have to
"wait” for other tasks to finish

Example: task 2 must wait to start until task 1
begins execution but task 2 ends up finishing
execution before function 1

Multithreading : Main Queue
Special Queue for iOS - the Main Queue

Serial queue (only one task from this will be handled
at any given time)
Reserved for Ul operations

This is done since the Ul of your app should

always be very responsive (i.e. tapping a button
should instantly send feedback to the user).

By having a queue reserved for these sorts of

operations, we can be sure that Ul operations will be
responsive

Dispatch Queues : Usage

Grand Central Dispatch - Apple technology to
manage queues of tasks in your application

So how do you actually execute code

asynchronously in Xcode?

1. Detine your task (what you want to be done
in another code) by placing it in a function or
closure

2. Add your task to one of the detault global
queues, or a queue created by you

Dispatch Queues (serial) : Creation

To create a queue, create an instance of
DispatchQueue using a unique label

let queue = DispatchQueue(label: “myqueue™)

To then execute a task on that queue, use the
instance methods sync and async

queue.sync A
print("hello world")
// your closure code here!

Dispatch Queues (serial) : Creation

To create a queue, create an instance of
DispatchQueue using a unique label

let queue = DispatchQueue(label: “myqueue™)

To then execute a task on that queue, use the
instance methods sync and async

func sayHello() {
print("hello world")

}

gueue.sync(execute: sayHello)

Quality of Service

Remember - often times
we want some queues to
be executed with a higher
priority than other queues.

How do we specity the

priority of a queue?
Set it's “Quality of
Service” (QoS)

QoS enum cases
(in descending

order of priority)

userInteractive
userInitiated
default

utility
background

unspecified

QoS Class Type of work and focus of QoS Duration of work to be performed

Work that is interacting with the user,

such as operating on the main thread,

refreshing the user interface, or

performing animations. If the work Work is virtually instantaneous.
doesn’t happen quickly, the user

interface may appear frozen. Focuses

on responsiveness and performance.

User-
interactive

Work that the user has initiated and

requires immediate results, such as

opening a saved document or

performing an action when the user Work is nearly instantaneous, such as
clicks something in the user interface. a few seconds or less.

The work is required in order to

continue user interaction. Focuses on

responsiveness and performance.

User-initiated

Work that may take some time to
complete and doesn’t require an
immediate result, such as downloading

Utility or importing data. Utility tasks typically Work takes a few seconds to a few

have a progress bar that is visible to minutes.

the user. Focuses on providing a

balance between responsiveness,

performance, and energy efficiency.

Work that operates in the background

and isn’t visible to the user, such as Work takes significant time, such as
Background

indexing, synchronizing, and backups. minutes or hours.

Focuses on energy efficiency.

QoS Cases (Apple Developer)

https://developer.apple.com/library/content/documentation/Performance/Conceptual/EnergyGuide-iOS/PrioritizeWorkWithQoS.html

Quality of Service (serial) : Priorities

To create a queue with a QoS, create an instance of
DispatchQueue using a unique label and QoS value

let queue = DispatchQueue(label: "myQ1",
gos: DispatchQoS.userInitiated)

let queue2 = DispatchQueue(label: “myQ2",
gos: DispatchQoS.utility)

Concurrent Queues

So far we have only been dealing with serial
queues (all tasks ot a single queue have been
executed and completed one after an other)

What if we don't care about the order that the tasks
In our queue are run?

Concurrent Queues

So far we have only been dealing with serial
queues (all tasks ot a single queue have been
executed and completed one after an other)

What if we don't care about the order that the tasks
In our queue are run?

Create a concurrent queue!

let queue = DispatchQueue(label: “myQ”,
gos: .utility,
attributes: .concurrent)

Concurrent Queues

So far we have only been dealing with serial
queues (all tasks ot a single queue have been
executed and completed one after an other)

What if we don't care about the order that the tasks

' ?
IN our gueue are run: Simply add the

“concurrent” attribute
Create a concurrent queue!

let queue = DispatchQueue(label: “myQ”,
gos: .utility,
attributes: .concurrent)

Global Queues

Though you can create your own queues, it may
not always be necessary to do so

Instead of initializing your own queue with an
identifier, you can access predefined global
queues with specific QoS values

Global Queues

Though you can create your own queues, it may
not always be necessary to do so

Instead of initializing your own queue with an
identifier, you can access predefined global
queues with specific QoS values

// returns a queue with default QoS
let globalQl = DispatchQueue.global()

// returns a queue with QoS = gos
let globalQ2 = DispatchQueue.global(gos: .utility)

Main Queues

Often times, we will want to delegate part of our
code to the main queue within a function / closure

that is placed in a background queue

You can access the main queue as follows:

DispatchQueue.main.async {
// do something on the main queue

¥

Queues : Real Lite Example

Recall this code we went over in our Networking

ecture

func loadImage() {
let url = URL(string:"https://instagram.com/img.jpg")
let session = URLSession.shared
let task = session.dataTask(with: url!,
completionHandler: {
(data, response, error) —> Void in
if error == nil A
let img = UIImage.init(data: data!)
self.1imageView.1image = 1img

})

task.resume()

}

Queues : Real Life Example

2017-04-11 17:56:13.141 Queue Example[24484:3466140] This
application is modifying the autolayout engine from a background
thread after the engine was accessed from the main thread. This
can lead to engine corruption and weird crashes.

Stack: (

® CoreFoundation Ox0000000108eacthOb
__exceptionPreprocess + 171

1 libobjc.A.dylib 0x000000010bd76141
objc_exception_throw + 48

2 CoreFoundation 0x000000010eb38625 +
[NSException raise:format:] + 197

3 Foundation 0x000000010babT17b
_AssertAutolayoutOnAllowedThreadsOnly + 105

4 Foundation Ox0000000108babefOf -
[NSISEngine _optimizeWithoutRebuilding] + 61

5 Foundation 0x000000010b8%9e7e6 -
[NSISEngine optimize] + 108

6 Foundation Ox0000000108babcefs -
[NSTSFnnine nerfarmPendinnfChanneNntificatinnel 4+ R4
All Output ¢ @ iy | |

Running the code from the previous slide as is will print out

the following warning in your console

Queues : Real Life Example

2017-04-11 17:56:13.141 Queue Example[24484:3466140] This
application is modifying the autolayout engine from a background
thread after the engine was accessed from the main thread. This
can lead to engine corruption and weird crashes.

Stack: (
® CoreFoundation Ox0000000108eacthOb
__exceptionPreprocess + 171
1 libobjc.A.dylib 0x000000010bd76141
objc_exception_throw + 48
2 CoreFoundation 0x000000010eb38625 +
[NSException raise:format:] + 197
3 Foundation 0x000000010babT17b
_AssertAutolayoutOnAllowedThreadsOnly + 105
4 Foundation Ox0000000108babefOf -
[NSISEngine _optimizeWithoutRebuilding] + 61
5 Foundation 0x000000010b8%9e7e6 -
[NSISEngine optimize] + 108
6 Foundation Ox0000000108babcefs -
[NSTSFnnine nerfarmPendinnfChanneNntificatinnel 4+ R4
‘ All Output ¢ @ iy | |

To fix the code - we need to make sure we update our Ul on

the main thread

Queues : Real Life Example

Recall this code we went over in our Networking

ecture

func loadImage() {
let url = URL(string:"https://instagram.com/img.jpg")
let session = URLSession.shared
let task = session.dataTask(with: url!,
completionHandler: {
(data, response, error) -> Void in
if error == nil {
let img = UIImage.init(data: data!)
self.imageView.1lmage = 1img

})

task.resume() !
} The completion handler of dataTask

will be called on a background thread

Queues : Real Life Example

Recall this code we went over in our Networking

ecture

func loadImage() {
let url = URL(string:"https://instagram.com/img.jpg")
let session = URLSession.shared
let task = session.dataTask(with: url!,
completionHandler: {
(data, response, error) -> Void in
if error == nil {
let img = UIImage.init(data: data!)
self.imageView.1lmage = 1img

})

task.resume() ! ! !
} Inside this completion handler, we

update our Ul

Queues : Real Life Example

Recall this code we went over in our Networking

ecture

func loadImage() {
let url = URL(string:"https://instagram.com/img.jpg")
let session = URLSession.shared
let task = session.dataTask(with: url!,
completionHandler: {
(data, response, error) -> Void in
if error == nil {
let 1mg = UIImage.init(data: data!)
DispatchQueue.main.async {
self.imageView.1lmage = 1img

}
}
})

task. resume() To fix - update Ul on main thread

Project 2 Part 2 and Lab 6
Due Tonight at 11:59pm

Next Lab : Project Work Day

