
iOS DeCal : Lecture 9
Delegates, Protocols, Advanced Swift (GCD,

Closures, Structs/Enums)

April 11, 2017

Lab this week - project work day
Attend section with your group (either lab room)

Attendance required

Project 2-2 and Lab 6 due tonight (11:59)
Make sure to submit Lab 6 to Gradescope (even if
you got checked off)

Announcements - 3/21

What’s Left
1 more lab assignment

2 more lectures

Final Presentations on 5/5 at 10am (Friday of
Dead Week)

Attendance is mandatory for a Pass

Announcements - 3/21

Protocols

Delegates

Advanced Swift
Structs and Enums

GCD

Overview : Today’s Lecture

Protocols

Protocols : Review
Protocol: a generic outline or skeleton
Set of rules that delegates must follow
Can be above a class declaration, or in own .swift
file

Classes that follow such rules are said to
“conform to the protocol”

Classes can conform to any number of protocols

protocol Vehicle {
 var numWheels: Int { get }
 func getSpeed() -> Double
 mutating func refuel(percentage: Double)
}

For a class to conform to this protocol
SomeDelegate, it must implement the sendBack
and updateModel methods

Protocols : Review

class SmartCar: Car, Vehicle {
 var numWheels = 4
 func getSpeed(){
 return self.speed
 }
 func refuel(percentage: Double) {
 self.gas += self.maxGas * percentage
 }
}

SmartCar is a subclass of Car and conforms to the
protocol Vehicle

Protocols : Review

Protocols are a way to express an API more
concisely
Instead of forcing a caller to pass in a specific class, (i.e. Car) an API can let the
caller pass in whatever class they want…as long as it fulfills certain desired
requirements (is a Vehicle)

func getRide(v: Vehicle) {
 return v
 }

Protocols don’t do any implementation
This means that they have zero storage associated with them, all storage is
provided by implementing classes.

Protocols : Why Though?

You may have seen delegates passed in through
functions (like Vehicle on the last slide). In general,
Protocols can be used just like types. This includes
using them as:

* Variable types
* Function parameters
* Function return values
…and pretty much anywhere else you see types
used.

Protocols : They are Types!

protocol SomeProtocol : InheritedProtocol1,
 InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double,
 arg2: String) -> SomeType
 mutating func changeIt()
 init(arg: Type)
}

Protocols : Declaration

protocol SomeProtocol : InheritedProtocol1,
 InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double,
 arg2: String) -> SomeType
 mutating func changeIt()
 init(arg: Type)
}

A protocol can inherit from any number of other protocols,
so long as it includes anything that those protocols require

Protocols : Decleration

protocol SomeProtocol : InheritedProtocol1,
 InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double,
 arg2: String) -> SomeType
 mutating func changeIt()
 init(arg: Type)
}
Any variable that is required must be specified as either
{ get } or { get set }
{ get }: The variable only needs to be gettable
{ get set }: The variable must be settable as well as
gettable

Protocols : Decleration

protocol SomeProtocol : InheritedProtocol1,
 InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double,
 arg2: String) -> SomeType
 mutating func changeIt()
 init(arg: Type)
}

Normal function requirement, must specify the return type if
there is one

Protocols : Decleration

protocol SomeProtocol : InheritedProtocol1,
 InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double,
 arg2: String) -> SomeType
 mutating func changeIt()
 init(arg: Type)
}
Adding the mutating keyword means that this method
must be capable of mutating the class/instance that is
conforming
(Note that you do NOT need to put the mutating
keyword in front of the function when you implement it in

Protocols : Decleration

protocol SomeProtocol : InheritedProtocol1,
 InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double,
 arg2: String) -> SomeType
 mutating func changeIt()
 init(arg: Type)
}

You can even require that the implementor have a specific
initializer
Note that an implementing class needs to mark this
initializer as required.

Protocols : Decleration

Delegates

What is Delegation? : Review

Design Pattern

Allows objects to interact with each other
without creating dependencies
 via Protocols, Delegates, and Data Sources

Delegation serves as a blind connection from the
view to the controller.

The view assumes that it has some minion who is
capable of performing certain actions, and uses
this minion despite being blind to who that minion
actually is.

Delegation : Main use in MVC

Delegation like this is accomplished by following
the following steps:

1. A view declares a protocol (i.e. what the controller will be doing for it
2. That view’s API has a delegate property with the protocol’s type
3. The view uses the delegate property to do things that the view can’t normally
do, assuming that there is some controller actually doing that work
4. Some controller declares that it conforms to the protocol from #1
5. That controller sets the view’s delegate property (from #2) to self, thus
declaring that it is the delegate.
6. That controller actually implements the protocol, so that it can do what it is
told to.

Delegation : Process

With that, the View is now hooked up to a
Controller!

The fun thing is, the View doesn’t actually know
anything about the Controller (besides that it is
capable of implementing the View’s protocol), so
the View remains generic/reusable.

Delegation : Process

Delegation Example

protocol RandomNumberGenerator {
 func random() -> Double
}

class LinearCongruentialGenerator: RandomNumberGenerator {
 var lastRandom = 42.0
 let m = 139968.0
 let a = 3877.0
 let c = 29573.0
 func random() -> Double {
 lastRandom =
 ((lastRandom * a + c).truncatingRemainder(dividingBy:m))
 return lastRandom / m
 }
}

Example : RandomGenerator

protocol RandomNumberGenerator {
 func random() -> Double
}

class LinearCongruentialGenerator: RandomNumberGenerator {
 var lastRandom = 42.0
 let m = 139968.0
 let a = 3877.0
 let c = 29573.0
 func random() -> Double {
 lastRandom =
 ((lastRandom * a + c).truncatingRemainder(dividingBy:m))
 return lastRandom / m
 }
}

Stating that we conform to a protocol

Example : RandomGenerator

protocol RandomNumberGenerator {
 func random() -> Double
}

class LinearCongruentialGenerator: RandomNumberGenerator {
 var lastRandom = 42.0
 let m = 139968.0
 let a = 3877.0
 let c = 29573.0
 func random() -> Double {
 lastRandom =
 ((lastRandom * a + c).truncatingRemainder(dividingBy:m))
 return lastRandom / m
 }
}

Implementing the required function

Example : RandomGenerator

protocol RandomNumberGenerator {
 func random() -> Double
}

class Dice {
 let sides: Int
 let generator: RandomNumberGenerator
 init(sides: Int, generator: RandomNumberGenerator) {
 self.sides = sides
 self.generator = generator
 }
 func roll() -> Int {
 return Int(generator.random() * Double(sides)) + 1
 }
}

Example : Using Protocols as Types

protocol RandomNumberGenerator {
 func random() -> Double
}

class Dice {
 let sides: Int
 let generator: RandomNumberGenerator
 init(sides: Int, generator: RandomNumberGenerator) {
 self.sides = sides
 self.generator = generator
 }
 func roll() -> Int {
 return Int(generator.random() * Double(sides)) + 1
 }
}

Declaring a variable of type RandomNumberGenerator, and declaring a function that takes in
a RandomNumberGenerator

Example : Using Protocols as Types

protocol RandomNumberGenerator {
 func random() -> Double
}

class Dice {
 let sides: Int
 let generator: RandomNumberGenerator
 init(sides: Int, generator: RandomNumberGenerator) {
 self.sides = sides
 self.generator = generator
 }
 func roll() -> Int {
 return Int(generator.random() * Double(sides)) + 1
 }
}

Since we know generator is a RandomNumberGenerator, we can assume that it has some
random() function that returns a Double

Example : Using Protocols as Types

protocol DiceGame {
 var dice: Dice { get }
 var delegate: DiceGameDelegate? { get set }
 func play()
}

protocol DiceGameDelegate {
 func gameDidStart(_ game: DiceGame)
 func game(_ game: DiceGame,
 didStartNewTurnWithDiceRoll diceRoll: Int)
 func gameDidEnd(_ game: DiceGame)
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGame {
 var dice: Dice { get }
 var delegate: DiceGameDelegate? { get set }
 func play()
}

protocol DiceGameDelegate {
 func gameDidStart(_ game: DiceGame)
 func game(_ game: DiceGame,
 didStartNewTurnWithDiceRoll diceRoll: Int)
 func gameDidEnd(_ game: DiceGame)
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGame {
 var dice: Dice { get }
 var delegate: DiceGameDelegate? { get set }
 func play()
}

class SnakesAndLadders: DiceGame {
 let finalSquare = 25
 let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
 var square = 0
 var board: [Int]
 init() {
 board = Array(repeating: 0, count: finalSquare + 1)
 board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02
 board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
 }
 var delegate: DiceGameDelegate?
 func play() {
 square = 0
 delegate?.gameDidStart(self)
 gameLoop: while square != finalSquare {
 let diceRoll = dice.roll()
 delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
 switch square + diceRoll {
 case finalSquare:
 break gameLoop
 case let newSquare where newSquare > finalSquare:
 continue gameLoop
 default:
 square += diceRoll
 square += board[square]
 }
 }
 delegate?.gameDidEnd(self)
 }
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGame {
 var dice: Dice { get }
 var delegate: DiceGameDelegate? { get set }
 func play()
}

class SnakesAndLadders: DiceGame {
 let finalSquare = 25
 let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
 var square = 0
 var board: [Int]
 init() {
 board = Array(repeating: 0, count: finalSquare + 1)
 board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02
 board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
 }
 var delegate: DiceGameDelegate?
 func play() {
 square = 0
 delegate?.gameDidStart(self)
 gameLoop: while square != finalSquare {
 let diceRoll = dice.roll()
 delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
 switch square + diceRoll {
 case finalSquare:
 break gameLoop
 case let newSquare where newSquare > finalSquare:
 continue gameLoop
 default:
 square += diceRoll
 square += board[square]
 }
 }
 delegate?.gameDidEnd(self)
 }
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGame {
 var dice: Dice { get }
 var delegate: DiceGameDelegate? { get set }
 func play()
}

class SnakesAndLadders: DiceGame {
 let finalSquare = 25
 let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
 var square = 0
 var board: [Int]
 init() {
 board = Array(repeating: 0, count: finalSquare + 1)
 board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02
 board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
 }
 var delegate: DiceGameDelegate?
 func play() {
 square = 0
 delegate?.gameDidStart(self)
 gameLoop: while square != finalSquare {
 let diceRoll = dice.roll()
 delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
 switch square + diceRoll {
 case finalSquare:
 break gameLoop
 case let newSquare where newSquare > finalSquare:
 continue gameLoop
 default:
 square += diceRoll
 square += board[square]
 }
 }
 delegate?.gameDidEnd(self)
 }
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGame {
 var dice: Dice { get }
 var delegate: DiceGameDelegate? { get set }
 func play()
}

class SnakesAndLadders: DiceGame {
 let finalSquare = 25
 let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
 var square = 0
 var board: [Int]
 init() {
 board = Array(repeating: 0, count: finalSquare + 1)
 board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02
 board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
 }
 var delegate: DiceGameDelegate?
 func play() {
 square = 0
 delegate?.gameDidStart(self)
 gameLoop: while square != finalSquare {
 let diceRoll = dice.roll()
 delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
 switch square + diceRoll {
 case finalSquare:
 break gameLoop
 case let newSquare where newSquare > finalSquare:
 continue gameLoop
 default:
 square += diceRoll
 square += board[square]
 }
 }
 delegate?.gameDidEnd(self)
 }
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGame {
 var dice: Dice { get }
 var delegate: DiceGameDelegate? { get set }
 func play()
}

class SnakesAndLadders: DiceGame {
 let finalSquare = 25
 let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
 var square = 0
 var board: [Int]
 init() {
 board = Array(repeating: 0, count: finalSquare + 1)
 board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02
 board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
 }
 var delegate: DiceGameDelegate?
 func play() {
 square = 0
 delegate?.gameDidStart(self)
 gameLoop: while square != finalSquare {
 let diceRoll = dice.roll()
 delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
 switch square + diceRoll {
 case finalSquare:
 break gameLoop
 case let newSquare where newSquare > finalSquare:
 continue gameLoop
 default:
 square += diceRoll
 square += board[square]
 }
 }
 delegate?.gameDidEnd(self)
 }
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a
delegate property with the
protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGame {
 var dice: Dice { get }
 var delegate: DiceGameDelegate? { get set }
 func play()
}

class SnakesAndLadders: DiceGame {
 let finalSquare = 25
 let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
 var square = 0
 var board: [Int]
 init() {
 board = Array(repeating: 0, count: finalSquare + 1)
 board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02
 board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
 }
 var delegate: DiceGameDelegate?
 func play() {
 square = 0
 delegate?.gameDidStart(self)
 gameLoop: while square != finalSquare {
 let diceRoll = dice.roll()
 delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
 switch square + diceRoll {
 case finalSquare:
 break gameLoop
 case let newSquare where newSquare > finalSquare:
 continue gameLoop
 default:
 square += diceRoll
 square += board[square]
 }
 }
 delegate?.gameDidEnd(self)
 }
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the
view can’t normally do, assuming
that there is some controller
actually doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGameDelegate {
 func gameDidStart(_ game: DiceGame)
 func game(_ game: DiceGame,
 didStartNewTurnWithDiceRoll diceRoll: Int)
 func gameDidEnd(_ game: DiceGame)
}

class DiceGameTracker: DiceGameDelegate {
 var numberOfTurns = 0
 init(game: DiceGame) {
 var game = game
 game.delegate = self
 }
 func gameDidStart(_ game: DiceGame) {
 numberOfTurns = 0
 if game is SnakesAndLadders {
 print("Started a new game of Snakes and Ladders")
 }
 print("The game is using a \(game.dice.sides)-sided dice")
 }
 func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
 numberOfTurns += 1
 print("Rolled a \(diceRoll)")
 }
 func gameDidEnd(_ game: DiceGame) {
 print("The game lasted for \(numberOfTurns) turns")
 }
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that
it conforms to the protocol from
#1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGameDelegate {
 func gameDidStart(_ game: DiceGame)
 func game(_ game: DiceGame,
 didStartNewTurnWithDiceRoll diceRoll: Int)
 func gameDidEnd(_ game: DiceGame)
}

class DiceGameTracker: DiceGameDelegate {
 var numberOfTurns = 0
 init(game: DiceGame) {
 var game = game
 game.delegate = self
 }
 func gameDidStart(_ game: DiceGame) {
 numberOfTurns = 0
 if game is SnakesAndLadders {
 print("Started a new game of Snakes and Ladders")
 }
 print("The game is using a \(game.dice.sides)-sided dice")
 }
 func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
 numberOfTurns += 1
 print("Rolled a \(diceRoll)")
 }
 func gameDidEnd(_ game: DiceGame) {
 print("The game lasted for \(numberOfTurns) turns")
 }
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that it
can do what it is told to.

protocol DiceGameDelegate {
 func gameDidStart(_ game: DiceGame)
 func game(_ game: DiceGame,
 didStartNewTurnWithDiceRoll diceRoll: Int)
 func gameDidEnd(_ game: DiceGame)
}

class DiceGameTracker: DiceGameDelegate {
 var numberOfTurns = 0
 init(game: DiceGame) {
 var game = game
 game.delegate = self
 }
 func gameDidStart(_ game: DiceGame) {
 numberOfTurns = 0
 if game is SnakesAndLadders {
 print("Started a new game of Snakes and Ladders")
 }
 print("The game is using a \(game.dice.sides)-sided dice")
 }
 func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
 numberOfTurns += 1
 print("Rolled a \(diceRoll)")
 }
 func gameDidEnd(_ game: DiceGame) {
 print("The game lasted for \(numberOfTurns) turns")
 }
}

Example : Delegation
1. A view declares a protocol
2. That view’s API has a delegate
property with the protocol’s type
3. The view uses the delegate
property to do things that the view
can’t normally do, assuming that
there is some controller actually
doing that work
4. Some controller declares that it
conforms to the protocol from #1
5. That controller sets the view’s
delegate property (from #2) to
self,
6. That controller actually
implements the protocol, so that
it can do what it is told to.

protocol DiceGameDelegate {
 func gameDidStart(_ game: DiceGame)
 func game(_ game: DiceGame,
 didStartNewTurnWithDiceRoll diceRoll: Int)
 func gameDidEnd(_ game: DiceGame)
}

class DiceGameTracker: DiceGameDelegate {
 var numberOfTurns = 0
 init(game: DiceGame) {
 var game = game
 game.delegate = self
 }
 func gameDidStart(_ game: DiceGame) {
 numberOfTurns = 0
 if game is SnakesAndLadders {
 print("Started a new game of Snakes and Ladders")
 }
 print("The game is using a \(game.dice.sides)-sided dice")
 }
 func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
 numberOfTurns += 1
 print("Rolled a \(diceRoll)")
 }
 func gameDidEnd(_ game: DiceGame) {
 print("The game lasted for \(numberOfTurns) turns")
 }
}

5 Minute Break

Structs and Enums

Multithreading

Thread - a single unit of execution in a
process

In applications that support multithreading
(i.e. iOS applications), you can delegate
different sections of code to be handled by
different threads

However, in iOS, you will deal with queues rather
than individual threads - more on that later!

Threads : Review

Why use multiple threads? CPU utilization

Example: Say we have an app that makes a
network request to read something from a
database

If we only have one thread, the CPU will be idle while
waiting for the network response.

A better idea is to use multiple threads, so we can do
other work (computations, UI updates, etc.) while we
wait

Threads : Review

Problem
We want our app to run as fast as possible, but we
have lengthy operations (calculations / data
traversals / network requests, etc.)

Solution
Put time-consuming computation on lower priority
threads
Put short operations that we need done right away
on higher priority threads (i.e. UI updates)

Multithreading : Overview

In iOS, interaction with threads is done via
queues

Tasks (functions / closures / blocks of code) are
added to a queue

Once the task is popped off, it will be executed by
the thread associated with that queue

Multithreading : Queues

New
tasks

added here

To execution!

FIFO Queue

Task 2 Task 1Task 3

In iOS, interaction with threads is done via
queues

Tasks (functions / closures / blocks of code) are
added to a queue

Once the task is popped off, it will be executed by
the thread associated with that queue

Multithreading : Queues

New
tasks

added here

To execution!

FIFO Queue

Task 2 Task 1Task 3

Side Note
Tasks are sometimes
referred to as “work

items”

Different Queues will have different priorities

Multithreading : Queues

queue #1

task 8 task 2

queue #2

task 7 task 4task 10

queue #3

task 12 task 1task 9

task 5task 13 task 0

task 3

task 17

Serial Queues
Executes a single task from the queue at a time

Tasks are handled in the order that they were
inserted (task 2 must wait for task 1 to complete
before execution)

Concurrent Queues
Allows for multiple tasks to be executed in
parallel

Queues : Two Different Types

In serial queues, newly added task must wait
until their predecessors complete.

Example: task 2 must wait until task 1 is
completed before it begins execution

Queues : Serial

task 3 task 2task 4 task 1

Queues : Concurrent (background)

task 3 task 2task 4 task 1

In concurrent queues, tasks will still begin
execution in FIFO order, but do not have to
“wait” for other tasks to finish

Queues : Concurrent (background)

task 3 task 2task 4 task 1

In concurrent queues, tasks will still begin
execution in FIFO order, but do not have to
“wait” for other tasks to finish

Example: task 2 must wait to start until task 1
begins execution but task 2 ends up finishing
execution before function 1

Special Queue for iOS - the Main Queue
Serial queue (only one task from this will be handled
at any given time)

Reserved for UI operations
This is done since the UI of your app should
always be very responsive (i.e. tapping a button
should instantly send feedback to the user).

By having a queue reserved for these sorts of
operations, we can be sure that UI operations will be
responsive

Multithreading : Main Queue

Grand Central Dispatch - Apple technology to
manage queues of tasks in your application

So how do you actually execute code
asynchronously in Xcode?

1. Define your task (what you want to be done
in another code) by placing it in a function or
closure

2. Add your task to one of the default global
queues, or a queue created by you

Dispatch Queues : Usage

To create a queue, create an instance of
DispatchQueue using a unique label

let	queue	=	DispatchQueue(label:	“myqueue")	

To then execute a task on that queue, use the
instance methods sync and async	

queue.sync	{	
			print("hello	world")	
			//	your	closure	code	here!	
}

Dispatch Queues (serial) : Creation

To create a queue, create an instance of
DispatchQueue using a unique label

let	queue	=	DispatchQueue(label:	“myqueue")	

To then execute a task on that queue, use the
instance methods sync and async	

func	sayHello()	{	
				print("hello	world")	
}	
queue.sync(execute:	sayHello)	

Dispatch Queues (serial) : Creation

Remember - often times
we want some queues to
be executed with a higher
priority than other queues.

How do we specify the
priority of a queue?
Set it’s “Quality of
Service” (QoS)

Quality of Service
QoS enum cases  

(in descending
order of priority)

userInteractive		
userInitiated		

default		
utility		

background		
unspecified

QoS Cases (Apple Developer)

https://developer.apple.com/library/content/documentation/Performance/Conceptual/EnergyGuide-iOS/PrioritizeWorkWithQoS.html

Quality of Service (serial) : Priorities

To create a queue with a QoS, create an instance of
DispatchQueue using a unique label and QoS value

let	queue	=	DispatchQueue(label:	"myQ1",		
													qos:	DispatchQoS.userInitiated)	

let	queue2	=	DispatchQueue(label:	“myQ2",	
																			qos:	DispatchQoS.utility)

Concurrent Queues
So far we have only been dealing with serial
queues (all tasks of a single queue have been
executed and completed one after an other)

What if we don’t care about the order that the tasks
in our queue are run?

Concurrent Queues
So far we have only been dealing with serial
queues (all tasks of a single queue have been
executed and completed one after an other)

What if we don’t care about the order that the tasks
in our queue are run?

Create a concurrent queue!

		let	queue	=	DispatchQueue(label:	“myQ”,	
													qos:	.utility,		

																	attributes:	.concurrent)

Concurrent Queues
So far we have only been dealing with serial
queues (all tasks of a single queue have been
executed and completed one after an other)

What if we don’t care about the order that the tasks
in our queue are run?

Create a concurrent queue!

		let	queue	=	DispatchQueue(label:	“myQ”,	
													qos:	.utility,		

																	attributes:	.concurrent)

Simply add the
“concurrent” attribute

Though you can create your own queues, it may
not always be necessary to do so

Instead of initializing your own queue with an
identifier, you can access predefined global
queues with specific QoS values

Global Queues

Though you can create your own queues, it may
not always be necessary to do so

Instead of initializing your own queue with an
identifier, you can access predefined global
queues with specific QoS values

//	returns	a	queue	with	default	QoS	
let	globalQ1	=	DispatchQueue.global()	

//	returns	a	queue	with	QoS	=	qos	
let	globalQ2	=	DispatchQueue.global(qos:	.utility)

Global Queues

Often times, we will want to delegate part of our
code to the main queue within a function / closure
that is placed in a background queue

You can access the main queue as follows:

DispatchQueue.main.async	{	
			//	do	something	on	the	main	queue	
}

Main Queues

Recall this code we went over in our Networking
lecture
func loadImage() {
 let url = URL(string:"https://instagram.com/img.jpg")
 let session = URLSession.shared
 let task = session.dataTask(with: url!,
 completionHandler: {
 (data, response, error) -> Void in
 if error == nil {
 let img = UIImage.init(data: data!)
 self.imageView.image = img
 }
 })
 task.resume()
}

Queues : Real Life Example

Queues : Real Life Example

Running the code from the previous slide as is will print out
the following warning in your console

Queues : Real Life Example

To fix the code - we need to make sure we update our UI on
the main thread

Recall this code we went over in our Networking
lecture
func loadImage() {
 let url = URL(string:"https://instagram.com/img.jpg")
 let session = URLSession.shared
 let task = session.dataTask(with: url!,
 completionHandler: {
 (data, response, error) -> Void in
 if error == nil {
 let img = UIImage.init(data: data!)
 self.imageView.image = img
 }
 })
 task.resume()
}

Queues : Real Life Example

The completion handler of dataTask
will be called on a background thread

Recall this code we went over in our Networking
lecture
func loadImage() {
 let url = URL(string:"https://instagram.com/img.jpg")
 let session = URLSession.shared
 let task = session.dataTask(with: url!,
 completionHandler: {
 (data, response, error) -> Void in
 if error == nil {
 let img = UIImage.init(data: data!)
 self.imageView.image = img
 }
 })
 task.resume()
}

Queues : Real Life Example

Inside this completion handler, we
update our UI

Recall this code we went over in our Networking
lecture
func loadImage() {
 let url = URL(string:"https://instagram.com/img.jpg")
 let session = URLSession.shared
 let task = session.dataTask(with: url!,
 completionHandler: {
 (data, response, error) -> Void in
 if error == nil {

 let img = UIImage.init(data: data!)
 DispatchQueue.main.async {

 self.imageView.image = img
 }

 }
 })
 task.resume()

Queues : Real Life Example

To fix - update UI on main thread

Next Lab : Project Work Day

Project 2 Part 2 and Lab 6
Due Tonight at 11:59pm

